
Analyzing Amazon
Books Reviews

Davide Ligari
Andrea Alberti
Cristian Andreoli

University of Pavia
Data Science and Big data Analytics

course

Data Table Schema:

Title

Description

Authors

Image

previewLink

Publisher

publishedDate

infoLink

categories

ratingsCount

Dataset

Ratings Table Schema:

Id

Title

Price

User_id

profileName

review/helpfulness

review/score

review/time

review/summary

review/text

• Kaggle dataset

• Two tables: Books data and
Ratings

• Size: 3.86 GB

• Around 3 millions of reviews

• Ethical considerations

Framing: Our Objectives

• Providing a scalable solution
to the dataset exploration and
analysis

• Developing a machine learning model
able to predict the helpfulness of
a review looking at its content

Workflow

Load to
HDFS

Data
Cleaning

MapReduce
SandBox
Creation

Prior
Analysis

Prior Analysis

Data Cleaning

Methodology

• Duplicates deletion

• Unuseful columns deletion
(those containing links)

• ‘Dangerous’ symbols deletion

• ‘Helpfulness’ columns
splitting

MapReduce Job

Join the two tables

• Mapper creates a key-value
structure

• Double key sorting (Title,
second field)

• Reducer performs the join

• The table is stored in Hadoop

SandBox Creation

Methodology

• Sandbox on MongoDB

• Random sample

• Rappresentative subset

Connect to MongoDB
import pymongo

client = pymongo.MongoClient('mongodb://localhost:27017/')
database = client['spark_db']
books = database['books_joined']
reviews = database['book_reviews’]

Load the data
df_joined = spark.read.csv("hdfs://localhost:9900/user/book_reviews/joined_tables",
header=True, schema=joined_schema, sep='\t’)

Select a random subset of the big data to import
N_to_sample = 300000
df_sample = df_joined.sample(withReplacement = False, fraction =
N_to_sample/df_joined.count(), seed = 42)

Convert to a dictionary
df_sample_dict = df_sample.toPandas().to_dict(orient='records')

Insert into MongoDB
books.insert_many(df_sample_dict)

Hypothesis Testing

Methodology

• MongoDB query to get data
ready for analysis

• SciPy to compute metrics

• Pandas data manipulation

• Seaborn and Matplotlib for
graphs

Remove the samples which have no score or helpfulness data
pipeline_remove =

{'$match’:{
'review/score':{'$exists':True},
'N_helpful' :{'$exists':True, '$ne':0},
'Tot_votes' :{'$exists':True, '$ne':0}
}

}

Retain only the required fields
pipeline_project =

{'$project’:{
'review/score':1,
'review/helpfulness_rate’:{

'$multiply’:[

{'$divide':['$N_helpful','$Tot_votes']},
{'$sqrt':'$Tot_votes’}

]
},
'_id':0,
'Tot_votes':1,
'N_helpful’:1
}

}

books_data = books.aggregate([pipeline_remove,pipeline_project])

𝒉𝒆𝒍𝒑𝒇𝒖𝒍𝒏𝒆𝒔𝒔 𝒔𝒄𝒐𝒓𝒆 =
𝒙

𝒚
𝒚

Hypothesis 1

Is the helpfulness
correlated to the

length of the review?

• Spearman's correlation
value: 0.331

• P-value < 0.05

𝑴𝒖𝒍𝒕𝒊𝒏𝒐𝒎𝒊𝒂𝒍 𝑵𝑩𝑪 ∶
→ 𝒕𝒐𝒑 𝟖𝟎𝟎 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒘𝒐𝒓𝒅𝒔

Hypothesis 2

Is the number of positive
words correlated to

helpfulness?

• Spearman's correlation
value: 0.318

• P-value < 0.05

𝑻𝒐𝒕 𝒗𝒐𝒕𝒆𝒔 < 𝟐𝟎
→ 𝒍𝒆𝒂𝒅𝒔 𝒕𝒐 𝒃𝒊𝒂𝒔

Hypothesis 3

Is there correlation
between rating score

and helpfulness?

• Spearman's correlation
value: 0.525

• P-value < 0.05

𝑨𝑵𝑶𝑽𝑨 𝒕𝒆𝒔𝒕

Hypothesis 4

Is the rating
score influenced

by the user?

• F-statistic: 1.537

• P-value: 0.067

𝑵. 𝒓𝒆𝒗𝒊𝒆𝒘𝒔 < 𝟐𝟎
→ 𝒍𝒆𝒂𝒅𝒔 𝒕𝒐 𝒃𝒊𝒂𝒔

𝑨𝑵𝑶𝑽𝑨 𝒕𝒆𝒔𝒕

Hypothesis 5

Is the rating score
influenced by the

category of a book?

• F-statistic: 0.177

• P-value: 0.999

𝑵. 𝒓𝒆𝒗𝒊𝒆𝒘𝒔 < 𝟐𝟎
→ 𝒍𝒆𝒂𝒅𝒔 𝒕𝒐 𝒃𝒊𝒂𝒔

Hypothesis 6

Is there correlation
between the number of
books of a publisher
and the review score?

• Spearman’s: -0.067

• P-value: 0.151

𝑵. 𝒃𝒐𝒐𝒌𝒔 < 𝟐𝟎
→ 𝒍𝒆𝒂𝒅𝒔 𝒕𝒐 𝒃𝒊𝒂𝒔

Curiosity

In which category are
the best publishers

focused?

𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑴𝒐𝒏𝒈𝒐𝑫𝑩 𝒒𝒖𝒆𝒓𝒚

Which are the best
publishers?

Real Scenario

Hypothesis 1 Hypothesis 2 Hypothesis 3

Spearman Coeff

Hadoop 0.361

Sandbox 0.331

Goals

• Provide scalable solution

• Prove results consistency

Tools

• Spark DataFrame

• Pyspark.ml

Spearman Coeff

Hadoop 0.318

Sandbox 0.318

Spearman Coeff

Hadoop 0.527

Sandbox 0.525

Helpfulness Prediction

Features
Extraction

Model
Selection

Best Model
Analysis

Features Extraction

Creation steps

• Word2Vec from Gensim

• Size = 30, Window = 5, Min
count = 2

• Size = 150, Window = 5, Min
count = 2

• Review = average of contained
words

Model Selection

Trained Models

• Random Forest Regressor

• Support Vector Regressor

• MLP Neural Network

GridSearchCV → Hyperparameters

selection

Model MSE RMSE 𝑹2

RF 0.0259 0.1609 0.2532

SVR 0.0279 0.1670 0.1955

MLP 0.0282 0.1680 0.1858

Best Model: Random Forest

• Size = 150 small improvement

• Underestimate when low and
Overestimate when high

• Impact of RMSE on helpfulness votes

• 100 Total votes → ± 13 helpful
votes

• Importance of Scalable Systems: Emphasizes the significance of scalable systems in data
analysis.

• Review Length and Sentiment: Longer reviews, especially the ones with positive words, tend
to be more useful, but excessively long reviews can be tedious.

• User Preference for Positive Reviews: Users find positive reviews more helpful.

• Objective User Ratings: User ratings appear to be unbiased and reflect objective
evaluations of books.

• Experience vs. Appreciation: The experience of publishers does not necessarily correlate
with higher appreciation from users.

• Future Work: Indicates a focus on feature engineering to enhance the model's performance.

Conclusions

AndreaAlberti07 DavideLigari

Authors

CristianAndreoli

Andrea Alberti

https://github.com/AndreaAlberti07
https://github.com/DavideLigari
https://andreaalberti07.github.io/

	Slide 1: Analyzing Amazon Books Reviews
	Slide 2: Dataset
	Slide 3: Framing: Our Objectives
	Slide 4: Workflow
	Slide 5: Prior Analysis
	Slide 6: Data Cleaning
	Slide 7: MapReduce Job
	Slide 8: SandBox Creation
	Slide 9: Hypothesis Testing
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Real Scenario
	Slide 18: Helpfulness Prediction
	Slide 19: Features Extraction
	Slide 20: Model Selection
	Slide 21: Best Model: Random Forest
	Slide 22
	Slide 23

