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Data Table Schema: 

Title

Description

Authors

Image

previewLink

Publisher

publishedDate

infoLink

categories

ratingsCount

Dataset

Ratings Table Schema:

Id

Title

Price

User_id

profileName

review/helpfulness

review/score

review/time

review/summary

review/text

• Kaggle dataset

• Two tables: Books data and 
Ratings

• Size: 3.86 GB

• Around 3 millions of reviews

• Ethical considerations



Framing: Our Objectives

• Providing a scalable solution 
to the dataset exploration and 
analysis

• Developing a machine learning model 
able to predict the helpfulness of 
a review looking at its content



Workflow

Load to 
HDFS

Data 
Cleaning

MapReduce
SandBox
Creation

Prior
Analysis



Prior Analysis



Data Cleaning

Methodology

• Duplicates deletion

• Unuseful columns deletion 
(those containing links)

• ‘Dangerous’ symbols deletion

• ‘Helpfulness’ columns 
splitting



MapReduce Job

Join the two tables

• Mapper creates a key-value 
structure

• Double key sorting (Title, 
second field)

• Reducer performs the join

• The table is stored in Hadoop



SandBox Creation

Methodology

• Sandbox on MongoDB

• Random sample 

• Rappresentative subset

# Connect to MongoDB
import pymongo

client = pymongo.MongoClient('mongodb://localhost:27017/')
database = client['spark_db']
books = database['books_joined']
reviews = database['book_reviews’]

# Load the data
df_joined = spark.read.csv("hdfs://localhost:9900/user/book_reviews/joined_tables",
header=True, schema=joined_schema, sep='\t’)

# Select a random subset of the big data to import
N_to_sample = 300000
df_sample = df_joined.sample(withReplacement = False, fraction =
N_to_sample/df_joined.count(), seed = 42)

# Convert to a dictionary
df_sample_dict = df_sample.toPandas().to_dict(orient='records')

# Insert into MongoDB
books.insert_many(df_sample_dict)



Hypothesis Testing

Methodology

• MongoDB query to get data 
ready for analysis

• SciPy to compute metrics

• Pandas data manipulation

• Seaborn and Matplotlib for 
graphs

# Remove the samples which have no score or helpfulness data
pipeline_remove =

{'$match’:{
'review/score':{'$exists':True},
'N_helpful' :{'$exists':True, '$ne':0},
'Tot_votes' :{'$exists':True, '$ne':0}
}

}

# Retain only the required fields
pipeline_project =

{'$project’:{
'review/score':1,
'review/helpfulness_rate’:{

'$multiply’:[

{'$divide':['$N_helpful','$Tot_votes']},
{'$sqrt':'$Tot_votes’}

]
},
'_id':0,
'Tot_votes':1,
'N_helpful’:1
}

} 

books_data = books.aggregate([pipeline_remove,pipeline_project])



𝒉𝒆𝒍𝒑𝒇𝒖𝒍𝒏𝒆𝒔𝒔 𝒔𝒄𝒐𝒓𝒆 =
𝒙

𝒚
𝒚

Hypothesis 1

Is the helpfulness 
correlated to the 

length of the review?

• Spearman's correlation 
value: 0.331

• P-value < 0.05



𝑴𝒖𝒍𝒕𝒊𝒏𝒐𝒎𝒊𝒂𝒍 𝑵𝑩𝑪 ∶
→ 𝒕𝒐𝒑 𝟖𝟎𝟎 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒘𝒐𝒓𝒅𝒔

Hypothesis 2

Is the number of positive 
words correlated to 

helpfulness?

• Spearman's correlation 
value: 0.318

• P-value < 0.05



𝑻𝒐𝒕 𝒗𝒐𝒕𝒆𝒔 < 𝟐𝟎
→ 𝒍𝒆𝒂𝒅𝒔 𝒕𝒐 𝒃𝒊𝒂𝒔

Hypothesis 3

Is there correlation 
between rating score 

and helpfulness?

• Spearman's correlation 
value: 0.525

• P-value < 0.05



𝑨𝑵𝑶𝑽𝑨 𝒕𝒆𝒔𝒕

Hypothesis 4

Is the rating 
score influenced 

by the user?

• F-statistic: 1.537

• P-value: 0.067

𝑵. 𝒓𝒆𝒗𝒊𝒆𝒘𝒔 < 𝟐𝟎
→ 𝒍𝒆𝒂𝒅𝒔 𝒕𝒐 𝒃𝒊𝒂𝒔



𝑨𝑵𝑶𝑽𝑨 𝒕𝒆𝒔𝒕

Hypothesis 5

Is the rating score 
influenced by the 

category of a book?

• F-statistic: 0.177

• P-value: 0.999

𝑵. 𝒓𝒆𝒗𝒊𝒆𝒘𝒔 < 𝟐𝟎
→ 𝒍𝒆𝒂𝒅𝒔 𝒕𝒐 𝒃𝒊𝒂𝒔



Hypothesis 6

Is there correlation 
between the number of 
books of a publisher 
and the review score?

• Spearman’s: -0.067

• P-value: 0.151

𝑵. 𝒃𝒐𝒐𝒌𝒔 < 𝟐𝟎
→ 𝒍𝒆𝒂𝒅𝒔 𝒕𝒐 𝒃𝒊𝒂𝒔



Curiosity

In which category are 
the best publishers 

focused?

𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑴𝒐𝒏𝒈𝒐𝑫𝑩 𝒒𝒖𝒆𝒓𝒚

Which are the best 
publishers?



Real Scenario

Hypothesis 1 Hypothesis 2 Hypothesis 3

Spearman Coeff 

Hadoop 0.361

Sandbox 0.331

Goals

• Provide scalable solution

• Prove results consistency

Tools

• Spark DataFrame

• Pyspark.ml

Spearman Coeff

Hadoop 0.318

Sandbox 0.318

Spearman Coeff

Hadoop 0.527

Sandbox 0.525



Helpfulness Prediction

Features 
Extraction

Model 
Selection

Best Model 
Analysis



Features Extraction

Creation steps

• Word2Vec from Gensim

• Size = 30, Window = 5, Min 
count = 2

• Size = 150, Window = 5, Min 
count = 2

• Review = average of contained 
words



Model Selection

Trained Models

• Random Forest Regressor

• Support Vector Regressor

• MLP Neural Network

GridSearchCV → Hyperparameters 

selection

Model MSE RMSE 𝑹2

RF 0.0259 0.1609 0.2532

SVR 0.0279 0.1670 0.1955

MLP 0.0282 0.1680 0.1858



Best Model: Random Forest

• Size = 150 small improvement

• Underestimate when low and 
Overestimate when high

• Impact of RMSE on helpfulness votes

• 100 Total votes → ± 13 helpful 
votes



• Importance of Scalable Systems: Emphasizes the significance of scalable systems in data 
analysis.

• Review Length and Sentiment: Longer reviews, especially the ones with positive words, tend 
to be more useful, but excessively long reviews can be tedious.

• User Preference for Positive Reviews: Users find positive reviews more helpful.

• Objective User Ratings: User ratings appear to be unbiased and reflect objective 
evaluations of books.

• Experience vs. Appreciation: The experience of publishers does not necessarily correlate 
with higher appreciation from users.

• Future Work: Indicates a focus on feature engineering to enhance the model's performance.

Conclusions
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