

Disease Prediction

A network theory + ML approach

University of Pavia
Financial Data Science
course

Andrea Alberti Davide Ligari Cristian Andreoli Matteo Scardovi

Dataset

- Kaggle dataset
- 773 unique diseases
- 377 unique symptoms
- 246.945 samples
- Artificially generated
- Artificially generated
- 246.945 samples

2// ulitque symproms

Our Objectives

GOAL 1

Evaluate the effectiveness on diseases prediction models of new features extracted from a bipartite graph (symptoms - diseases)

GOAL 2

Evaluate the effectiveness of graph-based solutions in improving the prediction models computational efficiency

Summary

Network

Network Creation Method of Reflections

Betweenness Centrality Communities Detection

Model ML

Data Preparation Features Extraction

Candidate Models

Operative Flow

Results

Best Model Selection

New Features Effect (GOAL 1)

Best Model Analysis Time Reduction (GOAL 2)

Network Methodology and Results

Network Creation

- Bipartite network
- unweighted
- Removed isolated nodes (52 symptoms)

(52 symptoms)

Removed isolated node

nnweignted

O Method of reflection O

2 Indexes

• SI index: related to symptom nodes

$$SI_{v, N} = \frac{1}{SI_{v, 1}} \sum_{u} W(v, u) DI_{u, N-1}$$

• DI index: related to disease nodes

$$DI_{u,N} = \frac{1}{DI_{u,1}} \sum_{v} W(v,u) SI_{v,N-1}$$

2 Levels

Level 1: Degree of the node

$$SI_{v,1} = \sum_{u} W(v,u)$$

 Level 2: a symptom is present in diseases affected by numerous other symptoms (SI) disease exhibits symptoms that affect many other diseases (DI)

O Method of reflection O

Significance test

- Employed null models
- Mean Close to 0 and Variance too high
- H0 Rejected

H0 Rejected

Mean close to b a Variance too high

OBetweenness Centrality O

Power Law Distribution

- Scale-free network with few Hubs
- Symptoms have higher betweenness than diseases
- Symptoms tends to have higher degrees
- Bad under predictive standpoint

OBetweenness Centrality O

Most influential nodes

- They are all symptoms
- Very commonly present

- Very commonly present
- They are all symptoms

Occidental Communities Detection

Co-occurrence similarity

- Greedy Modularity Maximization
- 3 Communities each
- INFO 1: symptoms in same communities frequently co-occur within same diseases
- INFO 2: symptoms specificity for a given community
- INFO 3: diseases specificity for a given community

given community

INFO 3: diseases specificity for a

Communities Detection Features

Community Count

- How many symptoms are from a given community
- Each symptom community has different common diseases.
- Model can learn prioritizing diseases from community with highest count

Community Size

- Replace symptom with size of its community
- Each symptom belongs to community of a given size
- Model can distinguish symptoms from large or small communities
- If many symptoms from small community, the diseases of that community may be more likely

O Most Important Actors

Features Reduction

- Various combinations options
- Take the most uncorrelated
- Classification based on thresholds (0.5 * avg deg)

Provided Insights

- Low-Low: very important for prediction of specific diseases
- Low-High: less specific than the first class
- **High-Low:** important in general
- High-High: important for overall
- Same analysis done for diseases to find the most symptomatologically complex

to find the most symptomatologically complex

O Most Important Symptoms

ML Models

Operative Flow O

Core Operations

- Sampling + Balancing
- Features Combination
- Hyperparameters Choice
- Model Selection
- Features Reduction

Features Reduction

Model Selection

Data Preparation

Random Sampling

- Dataset larger than 250k
- Many operations to be performed
- Random Sampling of 10% of data

National Sampting of the

Unbalanced Classes

Data Preparation

Oversampling and Undersampling

- Classes with more than 1200 samples
- Classes with less than 10 samples
- Very high delta
- Gain more than 5% accuracy

accuracy

Gain more than 5%

Very high delta

Balancing Function

```
def balanceSampling(features, labels, threshold=35):
   # Over-sample
   original samples per class = {
       label: np.sum(labels == label) for label in np.unique(labels)
   sampling strategy = {
       label: max(threshold, original samples)
       for label, original samples in original samples per class.items()
   ros = RandomOverSampler(random state=42, sampling strategy=sampling strategy)
   oversampled features, oversampled labels = ros.fit resample(features, labels)
   updated samples per class = {
       label: np.sum(oversampled labels == label) for label in np.unique(labels)
   sampling strategy = {
       label: min(threshold, original samples)
       for label, original samples in updated samples per class.items()
   rus = RandomUnderSampler(random state=42, sampling strategy=sampling strategy)
   undersampled features, labels = rus.fit resample(
       oversampled features, oversampled labels
   return undersampled features, labels
```

O Features Extraction

Classic Features

• **Symptoms** one hot encoding

Network Features

L1 and L2

Betweenness

Comm Count

Comm Size

Model Selection - Candidate Models

Model Choice

- Random Forest
- Logistic Regression
- Multi-Layer-Perceptron

Multi-Layer-Perceptron

OModel Selection - Features Selection

More complex isn't always better

- Forward stepwise feature selection
- Accuracy maximization

Accuracy maximization

Model Selection - Parameters Tuning

Greedy Approach

- Unfeasible GridSearch approach
- Tuning just one parameter at time
- No best absolute combination
- CrossValidation

Tuning Process

```
# Define the parameter grid to search for Random Forest
param_grid = {
    "n_estimators": [100,200,300,500,600],
    "max_depth": [25,50,75,100],
    "min_samples_split": [2,5,10],
    "min_samples_leaf": [1,2,5],
}

# Create the GridSearchCV object
grid_search = GridSearchCV(
    random_forest, param_grid, verbose=3, cv=3, scoring="accuracy", n_jobs=-1)

# Fit the GridSearchCV object to the data
grid_search.fit(X_train, y_train)
```

Model Selection - Symptoms only

Trained Models

- Logistic Regression
- Random Forest
- MLP Neural Network

- MLP Neural Network
- Random Forest

Model Selection - New Features

Trained Models

- Logistic Regression
- ❖ Betweenness, Count, Size
- Random Forest
- ❖ Betweenness, Count, Size
- MLP Neural Network
- ❖ Count, Size

Final Results - Network Features Effect

GOAL 1

- Equal performance as substitute
- More features thus complexity
- Simplicity of the dataset

Final Results - Best Model Analysis

Performance Analysis

- Classes based on the Disease Influence indexes
 - Diseases with low diagnostic accuracy
- Most impactful symptoms
- Most impactful symptoms

diagnostic accuracy

Final Results - Best Model Analysis

Performance Analysis

Symptoms overlap

Disease	Accuracy	f1-score
premature ventricular contractions	0.500000	0.666667
histoplasmosis	0.498876	0.560252
hemiplegia	0.483908	0.496462
acute bronchiolitis	0.473684	0.562500
poisoning due to antimicrobial drugs	0.467849	0.567968
open wound of the mouth	0.394890	0.564315
acute otitis media	0.383938	0.468456
vitamin b12 deficiency	0.333333	0.071429
bladder cancer	0.288740	0.378102
otitis media	0.250000	0.181818

0.250000

0.181818

otitis media

Final Results - Complexity Reduction

- Division based on SI indexes
- Complexity-Accuracy tradeoff

Histogram of Class-wise Accuracies Low-Low Low-High High-Low High-High Accuracy Low-Low Low-High High-Low High-High Class-wise Accuracy

GOAL 2

- Results on the full dataset: metrics comparison
- Time reduction

Conclusion

Achievements:

- Network models have a similar performance with respect to symptoms models
- A good balance between features reduction and model performance was achieved

Limits:

- Feature selection
- Hyperparameters tuning

A detailed and complete explanation of all the limits can be consulted in the report

Authors

AndreaAlberti07

<u>DavideLigari</u>

CristianAndreoli

TeoScardov