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Dataset

• Kaggle dataset

• 773 unique diseases

• 377 unique symptoms

• 246.945 samples

• Artificially generated



Our Objectives

GOAL 1

Evaluate the effectiveness on 
diseases prediction models of new 

features extracted from a bipartite 
graph (symptoms – diseases)

GOAL 2

Evaluate the effectiveness of 
graph-based solutions in improving 
the prediction models computational 

efficiency 
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Network Methodology and Results
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Network Creation

• Bipartite network

• unweighted
• Removed isolated nodes 

(52 symptoms) 



2 Indexes

• SI index: related to symptom nodes
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• DI index: related to disease nodes
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2 Levels

• Level 1: Degree of the node
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• Level 2: a symptom is present in 
diseases affected by numerous other 
symptoms (SI)                 
disease exhibits symptoms that 
affect many other diseases (DI)

Method of reflection



Significance 
test

• Employed null models

• Mean Close to 0 and 
Variance too high

• H0 Rejected

Method of reflection



Betweenness Centrality

Power Law Distribution

• Scale-free network with few Hubs

• Symptoms have higher betweenness 
than diseases

• Symptoms tends to have higher 
degrees

• Bad under predictive standpoint



Betweenness Centrality

Most influential 
nodes

• They are all symptoms

• Very commonly present



Communities Detection

Co-occurrence similarity

• Greedy Modularity Maximization

• 3 Communities each

• INFO 1: symptoms in same 
communities frequently co-occur 
within same diseases

• INFO 2: symptoms specificity for a 
given community

• INFO 3: diseases specificity for a 
given community



Communities Detection

Community Count 

• How many symptoms are from a given 
community

• Each symptom community has 
different common diseases.

• Model can learn prioritizing 
diseases from community with 
highest count

Features

Community Size 

• Replace symptom with size of its 
community

• Each symptom belongs to community 
of a given size

• Model can distinguish symptoms 
from large or small communities

• If many symptoms from small 
community, the diseases of that 
community may be more likely



Most Important Actors

Features Reduction

• Various combinations options

• Take the most uncorrelated

• Classification based on thresholds 
(0.5 * avg deg)



Most Important Symptoms

Provided Insights

• Low-Low: very important for 
prediction of specific diseases

• Low-High: less specific than the 
first class

• High-Low: important in general

• High-High: important for overall

• Same analysis done for diseases 
to find the most 
symptomatologically complex 



Most Important Symptoms
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Operative Flow

Core Operations

• Sampling + Balancing

• Features Combination

• Hyperparameters Choice

• Model Selection

• Features Reduction



Data Preparation

Unbalanced Classes

• Dataset larger than
250k

• Many operations to be 
performed

• Random Sampling of 10% 
of data

Random Sampling



Data Preparation

Balancing Function

• Classes with more than
1200 samples

• Classes with less
than 10 samples

• Very high delta

• Gain more than 5% 
accuracy

Oversampling and 
Undersampling



Features Extraction

Comm Count
Comm Size

Classic Features

• Symptoms one hot encoding
Network Features

L1 and L2 

Betweenness



Model Selection - Candidate Models

Model Choice

• Random Forest

• Logistic Regression

• Multi-Layer-Perceptron



More complex isn't 
always better

Example: logistic regression

• Forward stepwise
feature selection

• Accuracy maximization

Model Selection – Features Selection



Model Selection - Parameters Tuning

Tuning Process

• Unfeasible GridSearch
approach

• Tuning just 
one parameter at time

• No best absolute
combination

• CrossValidation

Greedy Approach



Trained Models

• Logistic Regression

• Random Forest

• MLP Neural Network

Model Selection – Symptoms only



Trained Models

• Logistic Regression

❖ Betweenness, Count, Size

• Random Forest

❖ Betweenness, Count, Size

• MLP Neural Network

❖ Count, Size

Model Selection – New Features



Final Results - Network Features Effect

GOAL 1

• Equal performance as 
substitute

• More features thus complexity

• Simplicity of the dataset



Final Results - Best Model Analysis

Performance Analysis

• Classes based on the
Disease Influence indexes

• Diseases with low
diagnostic accuracy

• Most impactful symptoms



Final Results - Best Model Analysis

Performance Analysis

• Symptoms overlap



• Division based on SI indexes

• Complexity-Accuracy tradeoff

GOAL 2

• Results on the full dataset:
metrics comparison

• Time reduction

Final Results - Complexity Reduction



Achievements:

• Network models have a similar performance with respect to symptoms models

• A good balance between features reduction and model performance was achieved

Limits:

• Feature selection

• Hyperparameters tuning

A detailed and complete explanation of all the limits can be consulted in the 
report

Conclusion
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