
Binarization and Vanishing Points Detection
Computer Vision Project

Davide Ligari, Andrea Alberti

Department of Computer Engineering - Data Science

University of Pavia, Italy

Email: davide.ligari01@universitadipavia.it - andrea.alberti01@universitadipavia.it

GitHub: https://github.com/AndreaAlberti07/Binarization-and-vanishing-points

March 11, 2024

Abstract

In this project, two image processing programs have
been developed.
The first, the Binarization Program, employs a de-
veloped Histogram-based thresholding technique to
convert images into binary form. It offers both au-
tomatic and manual tuning methods, allowing users
to find the ideal threshold for image segmentation.
The program calculates the optimal threshold by min-
imizing a loss function and the results are accurate as
shown by reported examples.
The second program, the Vanishing Point and Lines
Detection Program, focuses on detecting vanish-
ing points and lines within images, a critical task in
computer vision, augmented reality, and architectural
design. It uses a series of techniques including the
Canny edge detector, probabilistic Hough transform,
and RANSAC algorithm to achieve this. The program
is versatile and robust, as evidenced by real-world ex-
amples.
Both programs offer command-line interfaces for
easy integration into various workflows, making them
valuable tools for complex image processing chal-
lenges in the field of computer vision.

CONTENTS

1 Requirements 1

2 Binarization Program 1
2.1 Introduction 1
2.2 Reasoning Behind the Program 1
2.3 Functions Explanation 1

2.3.1 Loss Function 1
2.3.2 Finding the Best Threshold 1
2.3.3 Applying Threshold 2

2.4 Command Line Usage 2
2.5 GUI Usage 2
2.6 Examples 2
2.7 SSIM Computation 3

3 Vanishing Point and Lines Detection Program 4
3.1 Reasoning Behind the Program 4

3.1.1 Edge Detection 4
3.1.2 Lines Detection 4
3.1.3 Vanishing Point Detection 4

3.2 Command Line Usage 4
3.3 Examples 5

https://github.com/AndreaAlberti07/Binarization-and-vanishing-points

2 BINARIZATION PROGRAM page 1

1. REQUIREMENTS

To run these programs successfully, you must have the fol-
lowing packages installed:

• Python 3.9 or higher

• OpenCV: pip install opencv-python

• Numpy: pip install numpy

• Matplotlib: pip install matplotlib

• Scipy: pip install scipy

• Tkinter: see Documentation

2. BINARIZATION PROGRAM

This program is designed to perform image binarization us-
ing a specifically designed Histogram based thresholding
technique. It offers both automatic and manual tuning meth-
ods to determine the optimal threshold for converting a given
image into a binary image.

2.1. Introduction

Image binarization is a common image processing technique
used to separate objects or regions of interest from the back-
ground. The goal is to find an optimal threshold value that di-
vides the pixel values into two classes: foreground and back-
ground.

2.2. Reasoning Behind the Program

The program aims to find the best threshold value minimiz-
ing a loss function. Specifically, a loss is computed for each
possible value of the threshold and the minimum is selected.
Additionally, this program provides an option for manual
tuning, allowing users to adjust the threshold values to suit
their specific needs.

2.3. Functions Explanation

2.3.1. Loss Function

The get_loss function calculates a loss function based on
the provided parameters, such as the histogram values, bin
values, threshold, tuning method, and tuning values. The
fundamental principle underlying this approach is that when
a threshold is established, the pixels falling below it are as-
signed a value of 0, and those surpassing it are designated as
255. This behavior inherently introduces errors, particularly
pronounced for pixels in close proximity to the threshold. To
illustrate this concept further, consider a threshold set at 128.
A pixel with a value of 127 will be forcefully assigned a value
of 0, incurring a more substantial error compared to a pixel
with a lower initial value, such as 10.

Moreover the magnitude of error amplifies proportion-
ally with the number of pixels close to the threshold value.
Consequently, the design of an effective loss function neces-
sitates consideration of both the quantity of pixels affected
and their distance from the threshold. This requirement is
encapsulated in the following formula:

L =
T

∑
i=0

numi ·dist_u_threshi +
255

∑
i=T+1

numi ·dist_o_threshi

where:

• num: Histogram values.

• T: Threshold value for binarization.

• dist_u_thresh: Distance from the threshold for pixels
under the threshold.

• dist_o_thresh: Distance from the threshold for pixels
over the threshold.

Note that the distance is an ’inverted distance’ due to the rea-
sons explained above. Thus the closest pixel to the threshold
has the highest distance value, thereby is the most impacting
on the loss function.

If the tuning method is ’Auto’, the distance is calculated as:

IF mean > 128 THEN dist_o_thresh+= tuning_val

IF mean < 128 THEN dist_u_thresh+= tuning_val

where:

• tuning_val = abs(mean - 128)

This tuning is necessary to deal with cases in which the
histogram is highly unbalanced (e.g. most values are con-
centrated in the left part of the histogram). In this case, due
to how the distance is computed, the program would tend to
select a threshold located on the extreme right, because all
the pixels on the left would have a very high distance from
it which translates into a very low weight. This is solved by
adding a tuning value to the distance, which is proportional
to the distance of the mean from the middle of the histogram
(128).

If the tuning method is ’Manual’, the tuning value is inserted
by the user and divided in two:

• under_tuning: Tuning value for pixels under the
threshold.

• over_tuning: Tuning value for pixels over the thresh-
old.

The distance is calculated as:

dist_o_thresh+= under_tuning_value

dist_u_thresh+= over_tuning_value

2.3.2. Finding the Best Threshold

The get_best_thresh function finds the best threshold
value for binarization using a brute force approach, trying
all possible threshold values and retaining the one that min-
imizes the loss function. It can operate in either ’Auto’
mode, which automatically determines the optimal threshold,
or ’Manual’ mode, where users can specify under-tuning and
over-tuning values. This function returns the best threshold
value and the corresponding minimum loss value. It also of-
fers the option to plot the loss function for analysis.

https://tkdocs.com/tutorial/install.html

2 BINARIZATION PROGRAM page 2

2.3.3. Applying Threshold

The apply_thresh function applies the calculated threshold
to the given image. It returns a binary image with values of 0
or 1, where 0 represents the background and 1 represents the
foreground.

2.4. Command Line Usage

The program accepts the following command line arguments:

• -i or -img_path: Specify the path to the input image
+ name.

• -t or -tuning_method: Choose the tuning method,
either ’Auto’ or ’Manual.’

• -u or -under_tuning: Set the tuning value for pix-
els under the threshold (only for ’Manual’ tuning). It
generally results in a left-shift of the threshold.

• -o or -over_tuning: Set the tuning value for pixels
over the threshold (only for ’Manual’ tuning). It gen-
erally results in a right-shift of the threshold.

• -s or -storing_path: Specify the path to store the
output image + name.

• -show_all: Set to ’False’ only for serial script execu-
tion of multiple images.

For ’Auto’ tuning method:

1 python binarization.py -i [
path_to_input_image] -t Auto -s [
path_to_output_image] -show_all
True

For ’Manual’ tuning, you can use the following command:

1 python binarization.py -i [
path_to_input_image] -t Manual -u [
under_tuning_value] -o [
over_tuning_value] -s [
path_to_output_image] -show_all
True

2.5. GUI Usage

The program is also provided with a basic Graphic User
Interface (GUI) that allows users to select the input image,
tuning method, tuning values, and storing path. The GUI
also displays the loss function and the resulting binary im-
age. To run the GUI, simply run the following command in
the program directory:

Command line input

1 python binarization_GUI.py

Fig. 1: Graphical User Interface

2.6. Examples

These are some examples of the program’s output:

Command line input

1 python binarization.py -i ../Images/
binarization/27img.jpg -t Auto -s
27img_bin.jpg -show_all True

Fig. 2: Lake Loss Function

Fig. 3: Lake Binary Image

Command line input

1 python binarization.py -i ../Images/
binarization/5img.jpeg -t Auto -s 5
img_bin.jpg -show_all True

2 BINARIZATION PROGRAM page 3

Fig. 4: Cars Loss Function

Fig. 5: Cars Binary Image

Fig. 6: Lena Loss Function

Fig. 7: Lena Binary Image

2.7. SSIM Computation

Comparing the binarization program with Otsu’s method, the
SSIM index was computed for each image. The results are
shown below:

Fig. 8: SSIM Index

As expected, the SSIM index is low, this doesn’t imply one
method to overcome the other but simply that the two meth-
ods produce different results, indeed they are different algo-
rithms. Looking at the proposed example we can notice that,
despite its simplicity, the implemented algorithm performs
visually well across different images.

3 VANISHING POINT AND LINES DETECTION PROGRAM page 4

3. VANISHING POINT AND LINES DETECTION
PROGRAM

This program is designed to detect vanishing points and van-
ishing lines within images. It is implemented in Python and
is organized into multiple scripts, each dedicated to a specific
aspect of the task.

3.1. Reasoning Behind the Program

The development of the Vanishing Point and Lines Detection
Program is driven by the compelling need to extract valu-
able geometric insights from images, particularly the identi-
fication of converging lines towards a vanishing point. This
information holds substantial significance across various do-
mains, including computer vision, augmented reality, and ar-
chitectural design.
The program is designed to provide a robust and efficient so-
lution for the detection of vanishing points and lines without
the need for manual parameter specification. The program’s
functionality can be divided into four main stages:

• Preprocessing: This initial step involves transforming
the input image into a grayscale format and reducing
noise. It prepares the image for subsequent analysis by
enhancing its clarity and reducing unwanted artifacts.

• Edge Detection: Following preprocessing, the pro-
gram detects edges within the image.

• Lines Detection: In this phase, the program identifies
and extracts straight line segments from the image.

• Vanishing Point Detection: The final and most criti-
cal stage involves identifying the vanishing point and
vanishing lines within the image.

3.1.1. Edge Detection

Edge detection is a fundamental component of the program,
aimed at identifying significant transitions in intensity within
an image. These transitions often correspond to object
boundaries or structural elements, providing essential cues
for further analysis. To achieve edge detection, the program
employs the Canny edge detector, a multi-stage algorithm
that consists of several steps:

• Noise Reduction

• Gradient Computation

• Non-Maximum Suppression

• Hysteresis Thresholding

The values of the "low threshold" and "high threshold" pa-
rameters for the Canny edge detector are not fixed but rather
computed dynamically based on the image’s intensity distri-
bution. Specifically, the program calculates these thresholds
using the median of the image’s intensity distribution, and
the thresholds are set to the computed median ±0.22. This
adaptive approach ensures that edge detection remains effec-
tive across a wide range of images, adapting to variations in
lighting and content.

3.1.2. Lines Detection

The lines detection component of the program is respon-
sible for identifying straight line segments within the im-
age. These lines can represent a variety of linear structures,
including architectural elements, road markings, and other
prominent linear features.
To accomplish this task, the program employs the probabilis-
tic Hough transform, a widely-used technique for line detec-
tion in images. The Hough transform works by mapping im-
age points to a parameter space where lines are represented
as points. However, the Hough transform involves several
parameters that require careful tuning to achieve accurate re-
sults.
Due to the sensitivity of the Hough transform to param-
eter settings and the potential for returning different lines
based on these parameters, our approach involves running
the Hough transform multiple times, each with a different set
of parameters. By varying the parameters and accumulating
the resulting lines, we increase the program’s ability to cap-
ture a wide range of potential vanishing lines present in the
image.
To reduce the number of lines, a decision was made to con-
sider only the ten longest lines for each combination of pa-
rameters. Additionally, since parallel and vertical lines are
unlikely to be vanishing lines, they are removed.

3.1.3. Vanishing Point Detection

Before discussing the implementation, it is important to un-
derstand the concepts of the vanishing point and vanishing
lines.
The vanishing point refers to the point where most of the
lines in the image converge. Vanishing lines are the lines that
intersect at the vanishing point. Therefore, the challenge of
finding the vanishing point can be reduced to identifying the
lines that intersect at a common point.
To achieve this, the RANSAC algorithm is employed. Since
there are often a large number of detected lines, it is not fea-
sible to consider all of them for efficiency reasons. There-
fore, the algorithm iterates 500 times, randomly selecting
two lines in each iteration to calculate their point of inter-
section.
For each intersection point, the algorithm counts the number
of lines passing within a distance of 5 pixels from it. The
point with the highest number of lines passing within this 5-
pixel distance is considered the vanishing point. The lines
that pass within 5 pixels of this point are identified as the
vanishing lines.
To make the results more comprensible to the user, the pro-
gram draws the vanishing point and the 15-longest vanishing
lines on the image.

3.2. Command Line Usage

The program accepts the following command line arguments:

• -h or -help: show the help message and exit.

• -p or -path: Specify the path to the input image or a
folder containing images for batch processing.

• -t or -tuning_method: Choose the tuning method,

3 VANISHING POINT AND LINES DETECTION PROGRAM page 5

either ’Auto’ or ’Manual.’

• -l or -lowThreshold: Set the low threshold for the
Canny edge detector (only for ’Manual’ tuning).

• -r or -highThreshold: Set the high threshold for the
Canny edge detector (only for ’Manual’ tuning).

• -a or -theta: Set the theta value for the Hough trans-
form (only for ’Manual’ tuning).

• -d or -threshold: Set the threshold value for the
Hough transform (only for ’Manual’ tuning).

• -m or -minLineLength: Set the minimum line length
for the Hough transform (only for ’Manual’ tuning).

• -g or -maxLineGap: Set the maximum line gap for the
Hough transform (only for ’Manual’ tuning).

• -s or -storingPath: Specify the path to store the out-
put image + name.

For ’Auto’ tuning method:

1 python vanishingPointDetection.py -p
../Images/vanishing_points -t Auto
-s ../Images/vanishing_points/

results

For ’Manual’ tuning, you can use the following command:

1 python3 vanishingPointDetection.py -p
../Images/vanishing_points -t
Manual -l 30 -r 55 -a 1 -d 100 -m
20 -g 16

3.3. Examples

These are some examples of the program’s output:

Command line input

1 python3 vanishingPointDetection.py -p
../Images/vanishing_points/
van_points.jpg -t Auto -s ../Images
/examples/van_points.jpg

Fig. 9: Result of the vanishing point detection on the image
van_points.jpg

Command line input

1 python3 vanishingPointDetection.py -p
../Images/vanishing_points/
van_points8.jpg -t Auto -s ../
Images/examples/van_points8.jpg

Fig. 10: Result of the vanishing point detection on the image
van_points8.jpg

Command line input

1 python3 vanishingPointDetection.py -p
../Images/vanishing_points/
van_points13.jpg -t Auto -s ../
Images/examples/van_points13.jpg

Fig. 11: Result of the vanishing point detection on the image
van_points13.jpg

3 VANISHING POINT AND LINES DETECTION PROGRAM page 6

Command line input

1 python3 vanishingPointDetection.py -p
../Images/vanishing_points/
van_points6.jpg -t Auto -s ../
Images/examples/van_points6.jpg

Fig. 12: Result of the vanishing point detection on the image
van_points6.jpg

2

	1 Requirements
	2 Binarization Program
	2.1 Introduction
	2.2 Reasoning Behind the Program
	2.3 Functions Explanation
	2.3.1 Loss Function
	2.3.2 Finding the Best Threshold
	2.3.3 Applying Threshold

	2.4 Command Line Usage
	2.5 GUI Usage
	2.6 Examples
	2.7 SSIM Computation

	3 Vanishing Point and Lines Detection Program
	3.1 Reasoning Behind the Program
	3.1.1 Edge Detection
	3.1.2 Lines Detection
	3.1.3 Vanishing Point Detection

	3.2 Command Line Usage
	3.3 Examples

