UNIVERSITA DI PAVIA

Machine Learning Course

Movie Reviews: sentiment analysis

Andrea Alberti

Department of Computer Engineering - Data Science

University of Pavia, Italy

Email: andrea.alberti0l1@universitadipavia.it

February 25, 2024

Abstract

This project aims to develop a Multino-
mial Naive Bayesian classifier that can ac-
curately predict the sentiment of movie re-
views based on their textual content. The
available data comprises a collection of
labeled movie reviews classified as posi-
tive or negative. The study explores var-
ious versions, of the Multinomial Naive
Bayesian model including different vocab-
ulary sizes, to evaluate the classifier’s per-
formance. Additionally, the project inves-
tigates the use of logistic regression as an
alternative approach for predicting the re-
views’ sentiment. The analysis of the re-
sults demonstrates that despite its simplic-
ity the Multinomial Naive Bayesian classi-
fier is a robust model for sentiment anal-
ysis tasks. The logistic regression model
also achieves promising results with a small
training effort.

Contents

1 Introduction
1.1 Available Data . . .. ... .. ...
1.2 Goal . ... ... ... ... .....
1.3 Naive Bayesian Classifier . . . . . . .

2 Model Building
2.1 Build a vocabulary . . ... ... ..
2.2 Extract Features . .. ... ... ..
2.3 Train Classifier . . . ... ... ...
24 Variants . . .. ... ... ... ...

3 Model Analysis
3.1 Changing Vocabulary Size . . . . . .
3.2 Analysis . ... ... ...

4 Logistic Regression
41 Results. . ... ... ... ... ...

— e

MO DO =

NN

95



1 Introduction

Text classification is used in many areas, such as
spam filtering and document sorting. Sentiment
analysis is a fascinating application that involves
predicting the emotions of writers, such as anger,
happiness, and sadness. It is useful for analyzing
people’s opinions on products, books, TV shows,
and political parties.

1.1 Awvailable Data

The dataset presented in the paper ” Learning Word
Vectors for Sentiment Analysis” by Andrew L.
Maas et al. will be used. It contains 50,000 reviews
that are equally distributed across two classes. The
dataset divided into a training set of 25,000 reviews,
a validation set of 12,500 reviews, and a test set of
12,500 reviews.

1.2 Goal

The goal of this project is to fit a Multinomial Naive
Bayes classifier to the training set and use it to
predict whether a new unseen review is positive or
negative.

1.3 Naive Bayesian Classifier

The Multinomial Naive Bayes classifier is a simple
probabilistic generative classifier based on apply-
ing Bayes’ theorem with strong independence as-
sumptions between the features. In particular the
features are integers values and in this case are rep-
resented by the Bag of World representation (dis-
cussed later) of each review. Since the model is a
generative one it works by estimating the probabil-
ity of each feature given the class and then using
Bayes’ theorem to compute the probability of the
class given the feature vector.

Formal description

Here is described the model in a more formal way:

1. The goal is to find P(Y|X) which is the proba-
bility of a class (Y = y) given the feature vector
(X = x). This is compute using Bayes’ theorem.

PX|Y)P(Y)
P(X)

max, P(Y|X) =
2. Introducing the Naive independence assumption
assuming P(X|Y) follows a multinomial distribu-
tion where 7, ; is the probability of the j-th feature
given the class y P(X;|Y = y) and z; is the number
of times the j-th feature appears in the document.

(eataat.. dan)! Fyo-1 7,
zylzo!..xp! Hj:0 TryJ

PXY =y) =
3. Inserting 2 inside 1 and applying logarithm we
obtain:

P(Y =y|X)=Y""gx;logm,; +log P(Y)

and
§ = argmax, Z?;Ol z;logm, j +log P(Y)

Basically we classify to the class (Y = y) maximiz-
ing the function in point 3. The parameters of the
model are the 7, ; and the P(Y) which are esti-
mated simply computing the relative frequencies of
the features and the classes in the training set. For
example:

Nx. v=y

Ty.i = "Ny,

2 Model Building

To use the Multinomial Bayesian Classifier for text
classification it is necessary to perform 3 steps.
First of all a vocabulary containing the words that
will be used to represent the reviews must be built.
Then the features must be extracted from the re-
views, creating the BoW representation of each re-
view. Finally the classifier must be trained.

2.1 Build a vocabulary

The vocabulary is built taking the most frequent
words in the training set. Since the number of
words taken can influence the performance of the
model, the vocabulary size is varied in the ”Chang-
ing Vocabulary Size” section and the results are
compared. The vocabulary is created in the follow-
ing way:

1. The training set is read and the words are to-
kenized removing punctuation, capital letters and
words shorter than 3 characters.

2. The words are counted and the most frequent
ones are taken and stored in a txt file.

2.2 Extract Features

The features are extracted from the reviews creat-
ing the Bag of Words representation. The features
are the words in the vocabulary and the value of
each feature is the number of times the word ap-
pears in the review.



2.3 Train Classifier

The training phase is just the application of what
said in the ”Formal description” section. Using the
relative frequencies the parameters to learn are:

1. The probability distribution of each word in-
side each class 7y ;.

2. The probability distribution for the class
P(Y =y).

Model performance

A first result of the train and test accuracies of
the model, together with some specifications are
reported in table 1:

Table 1: Base Model performance

Test_acc
0.816

Train_acc
0.820

Voc_size
1000

Version

Base

The model has already a good performance since
the accuracy is above 80%. In particular the model
is neither overfitting nor underfitting since the train
and test accuracy are quite similar. However the
model can be improved and in the next section
some variants are proposed.

2.4 Variants

Excluding common words

To add this modification to the base version we
need first of all to have a list of the words we want
to exclude. The list is in the file ’stopwords.tzt’. A
new vocabulary excluding the words in this latter
is created and its size can be freely chose. At this
point the BoW must be adapted to the new vocab-
ulary and all is set. The model can now be trained
and tested.

Introducing stemming

The functions have been designed to support the
optional stemming argument. If set to True the
functions use the Porter Stemmer algorithm to
stem the words read from the files. Once again a
new vocabulary is built and the BoW is adapted to
the new vocabulary.

Comparison

In the table 2 is reported a comparison between the
base model and the two variants. A more detailed
comparison is done at the end of the report, in the
”Changing Vocabulary size” section where also the
training set and the vocabulary size are varied.

Table 2: Model performance comparison

Version Voc_size | Train_acc | Test_acc
Base 1000 0.820 0.816
Stopwords 1000 0.829 0.826
Stemming 1000 0.823 0.817
Hybrid 1000 0.826 0.820

The results show that the model with the stopwords
excluded performs better than both, the base model
and the one with stemming with the specifications
reported in the table 2. In the last row there are the
results of the model with both stemming and stop-
words excluded. The results are not better than
the one with the stopwords excluded.

3 Model Analysis

In this section is done a comparison among the four
models above proposed. The best model is chosen
and analyzed in order to understand the most im-
pactful words on its prediction and the worst errors
it makes.

3.1 Changing Vocabulary Size

The vocabulary size is varied in order to see how
the performance of the various models is affected.
The results are reported in figure 1 and figure 2.

Vocabulary size comparisen (full training set)

0.82

Test accuracy
o
»
3

e
S
®

—e— dassic
stemming

—e— stopwords

—e— stopwords + stemming

1000 2000 3000 4000 5000
size

Figure 1: Test accuracies comparison

Delta comparison (full training set)

3.0 —® dassic
stopwords

—e— stemming

—e— stopwords + stemming

Delta train-test accuracy (%)

1000 2000 3000 4000 5000
size

Figure 2: Delta error comparison



As expected the accuracy of the model increases
with the vocabulary size. However the increase
is not linear and after a certain size the accuracy
stays almost constant. In the figure 2 is reported
the delta between the training accuracy and the test
accuracy as a function of the vocabulary size. For
all the model the delta increases with the growing of
the vocabulary, suggesting that the model is over-
fitting. This is reasonable because the number of
parameters to learn increases with the vocabulary
size. Some model, like the red one are more prone
to overfitting. The model that doesn’t consider
stopwords is the best, probably because because
it excludes words (e.g. ’the’) that don’t provide
any information about the sentiment of the review.
From now on, the model considered is the one that
excludes the stopwords with a vocabulary size of
1000 words. This is a good compromise between
computational cost and model performance, since
the test accuracy is high and the delta is almost
the lowest among the models.

3.2 Analysis

Most impactful words

The most impactful words for a class are those that
most influence the classification score in favour of
that class. They are taken looking at the proba-
bility gap of each word between the two classes.
Results are reported in table 3 and table 4.

Table 3: Positive Class
Voc size ‘Word Score
1000 superb 1.737
1000 stewart 1.643
1000 wonderful | 1.586
1000 fantastic 1.530
1000 excellent 1.485
1000 amazing 1.415
1000 powerful 1.326
1000 favorite 1.289
1000 perfect 1.268
1000 brilliant 1.251
Table 4: Negative Class
Voc size ‘Word Score
1000 waste -2.601
1000 pointless | -2.435
1000 worst -2.268
1000 awful -2.208
1000 poorly -2.201
1000 lame -1.962
1000 horrible | -1.891
1000 pathetic | -1.880
1000 wasted -1.818
1000 crap -1.816

Worst errors for the chosen model.

The worst errors produced by the model are the
data misclassified with the higher confidence. In
other words, are the reviews for which the gap be-
tween the classification scores of the two classes is
the largest. They are shown in figure 3 and figure
4.

False positive reviews

11090_4.txt
10784 _4.txt
5522_3.txt
6170_4.txt
9154 _2.txt
6014 4.txt
1922 1.txt
2918 _1.txt
6130_4.txt
9244 _4.txt

Review name

Figure 3: False positives

False negative reviews

—20

—25 -

7548_9.txt 4
5738_7.txt 4
12420_10.txt q
12178 _7.txt
9692_9.txt 4
1376_8.txt
1510_8.txt
8358_7.txt 4
11454 _7.txt
2158_10.txt

Review name

Figure 4: False negatives

4 Logistic Regression

For completeness the movie review problem is also
faced using the Logistic Regression model.

4.1 Results

The model is a Logistic Regression without regular-
ization, fitted on the stopwords version of the prob-
lem. The hyper parameters used together with the
results are written in table 5. In general the results
are quite good similarly to the ones obtained with



the Naive Bayes model. In figure 5 and figure 6 are False negative reviews
shown the worst errors by logistic regression.

Table 5: Hyper parameters 21

Tol. Ir Train_acc | Test_acc o
0.0001 | 0.0023 0.867 0.854 E

61

False positive reviews

8]
5
¥ 2 5 £ ¥ ¥ 2 § % B
NI R T T T T B
«© =t U =} o =3 © = @ j=J
61 o 2 & o ™ ] = 8 " 2
M — @ — — — ~ o~ «© =+
208 7 B
g Review name
&
4
Figure 6: False negatives
2]
0l

6170_4.txt
9940_1.txt
8136_4.txt
11090_4.txt
2918 l.txt
9510 _3.txt
7696_1.txt
8776_4.txt
10784 _4.txt
9528_1.txt

Review name

Figure 5: False positives



	Introduction
	Available Data
	Goal
	Naive Bayesian Classifier

	Model Building
	Build a vocabulary
	Extract Features
	Train Classifier
	Variants

	Model Analysis
	Changing Vocabulary Size
	Analysis

	Logistic Regression
	Results


