
From Raw Data to Informed Decisions:
Analyzing Amazon Book Reviews

Alberti A. • Ligari D. • Andreoli A.1

1 Data Science and Big data Analytics course, University of Pavia, Department of Computer Engineering (Data Science), Pavia, Italy
Github page: https://github.com/DavideLigari01/data-science-project

Date: September 26, 2023

Abstract —This report delves into the Amazon Books Review dataset using data science techniques. Our goal was to uncover insights,
sentiments, and correlations within this extensive collection of reviews. Leveraging tools like Hadoop, Spark, MongoDB, and Python
libraries, we explored factors influencing review helpfulness, including review length, sentiment, and ratings. We also ventured into
helpfulness prediction with Word2Vec and machine learning, training and evaluating different models like Random Forest, Support Vector
Regressor and Multi Layer Perceptron Regressor. This report underscores the power of data science in understanding book reviews,
emphasizing data-driven decision-making and discovering hidden patterns in data.

Keywords —Big Data • Hadoop • Spark • ML • MongoDB • Data Analysis • Data Visualization • Python

CONTENTS

1 Introduction 1

2 Discovery 1

3 Data Preparation 2

4 Local Hypotheses Testing 2

5 Spark Hypotheses Testing 5

6 Helpfulness Prediction 5

7 Complex MongoDB query 6

8 Conclusion 6

1. INTRODUCTION

I n the age of digital commerce, customer reviews pro-
foundly impact product perception and purchase deci-

sions. Amazon, with its extensive repository of book reviews
spanning nearly two decades, holds a wealth of valuable in-
sights, sentiments, and trends. This project aims to create a
scalable solution for uncovering patterns, sentiment trends,
and correlations within the realm of book reviews, utilizing
advanced tools and technologies.
In this report, we provide a detailed exploration of our
project, covering stages from initial data discovery and
preparation to feature extraction, model building, and eval-
uation.

2. DISCOVERY

To initiate our data science initiative, it was important to as-
semble our team, precisely define our project’s objectives,
and conduct a comprehensive assessment of the available
tools.

Team

The team is composed by three members:
Andrea Alberti: github.com/AndreaAlberti07
Davide Ligari: github.com/DavideLigari01
Cristian Andreoli: github.com/CristianAndreoli94

Framing

The primary objective of this project is to craft a scalable so-
lution for the comprehensive analysis of a dataset comprising
Amazon book reviews. Ultimately, our aim is to construct a
predictive model capable of assessing the helpfulness of a
review based on its content.

Tools

The selection of our tools was driven by the objective of
crafting a scalable solution that can effectively operate within
a Big Data environment.

• Virtual Machine: Employed to establish a controlled
working environment.

• Hadoop: Utilized for the storage of data within a dis-
tributed file system and for executing MapReduce opera-
tions.

• Spark: Chosen as an enhanced alternative to MapReduce,
facilitating operations on distributed datasets.

https://github.com/DavideLigari01/data-science-project
https://github.com/AndreaAlberti07
https://github.com/DavideLigari01
https://github.com/CristianAndreoli94

LIGARI ALBERTI ANDREOLI ANALYSIS OF AMAZON BOOK REVIEWS 2

• Python: Adopted as the primary programming language
due to its extensive library support.

• MongoDB: Implemented as a NoSQL database sandbox,
ensuring secure handling of local data.

• GitHub: Employed for seamless project sharing and col-
laborative development.

• LaTeX: Utilized for the creation of the project report, en-
suring professional and structured documentation.

3. DATA PREPARATION

To commence our project, we initiated the process of data
retrieval and preparation.

Data Retrieval and Preliminary Analysis

The selected dataset comprises two tables and approxi-
mately three million reviews, accessible at the following
link: Amazon Books Reviews. After acquiring the dataset,
we executed the following steps:

1. HDFS Loading: We loaded the data into HDFS using
the following commands:

Create HDFS directories
hdfs dfs -mkdir -p "$HDFS_PATH/ratings"
hdfs dfs -mkdir -p "$HDFS_PATH/books_info"

Copy local files to HDFS
hdfs dfs -copyFromLocal "$LOCAL_PATH/ratings.csv"

"$HDFS_PATH/ratings/"
hdfs dfs -copyFromLocal "$LOCAL_PATH/books_info.

csv" "$HDFS_PATH/books_info/"� �
2. Preliminary Analysis: We utilized PySpark to gain a
comprehensive understanding of the data. During this phase,
we defined a schema for our data and computed essential
statistics, including the percentage of missing values and
unique values for each field in our dataset.

Hypothesis Generation

Following the preliminary analysis, we formulated several
hypotheses for testing:

• H1: Reviews with longer text exhibit higher helpfulness
ratings.

• H2: Reviews containing more positive sentiment words
receive higher helpfulness ratings.

• H3: Reviews associated with higher book ratings correlate
with higher helpfulness ratings.

• H4: Rating scores are influenced by individual users, po-
tentially leading to overestimation or underestimation of a
book’s quality. Anonymous users may tend to underrate
books.

• H5: The review score is influenced by the category of the
book.

• H6: An increase in the number of books published within
a category or by a particular publisher results in higher re-
view scores.

Data Cleaning

In this phase, we cleaned the data, addressing duplicates,
eliminating extraneous columns for our analysis, and remov-

ing any symbols that could potentially interfere with the
reading of the CSV files. All cleaning operations were ex-
ecuted using PySpark.

Data Aggregation

The MapReduce job performs an inner join operation be-
tween the "Data table" and the "Rating table" based on the
book title, resulting in a single file containing the joined
records from both tables.

Mapper

The Mapper script processes input data line by line, convert-
ing each line into a key-value structure. The key represents
the book title, and the value contains the remaining line con-
tent. To distinguish between records from the ’Data table’
and ’Rating table’ and ensure the correct processing order in
the Reducer phase, the Mapper appends a special character
(’-’ for ’Data table’ and ’www’ for ’Rating table’) as the sec-
ond key element. This ensures that ’Data table’ records are
processed before ’Rating table’ records during subsequent
MapReduce phases.

Reducer

The Reducer script processes intermediate output records
generated by the Mapper, aiming to join ’Data’ and ’Rat-
ing’ records for the same title. The Reducer reads records
sequentially, storing ’Data’ and ’Rating’ information sepa-
rately. When both ’Data’ and ’Rating’ records for the same
title are available, the Reducer performs the join operation
by combining the data from these records.

MongoDB Loading

Upon completion of all previous operations, the next step in-
volved the creation of a sandbox environment for local hy-
pothesis testing. We chose to use MongoDB as DBMS due
to its flexibility and ease of use. The process included the
following steps:

• Connect to MongoDB using the ‘pymongo‘ library.
• Establish a connection to HDFS and read the data using the

‘spark.read.csv‘ method.
• Randomly select a subset (300 k samples) of the Spark

DataFrame for import, employing the ‘sample‘ method.
• Transform the data into a dictionary format using the

‘to_dict‘ method.
• Insert the transformed data into MongoDB using the ‘in-

sert_many‘ method.

We imported both the ‘ratings‘ and ‘books_info‘ tables into
MongoDB, along with the resultant joined table generated
through the MapReduce process. These datasets were instru-
mental in conducting the local hypothesis testing described
below.

4. LOCAL HYPOTHESES TESTING

Hypothesis 1

H0 (Null Hypothesis): There is a positive correlation be-
tween the length of a review and its helpfulness score.

https://www.kaggle.com/datasets/mohamedbakhet/amazon-books-reviews

LIGARI ALBERTI ANDREOLI ANALYSIS OF AMAZON BOOK REVIEWS 3

The data cleaning and ’review/helpfulness’ transformation
process (helpfulness score = x

y
√

y) was executed using the
‘pymongo‘ library to leverage the efficiency of MongoDB.
Specifically, we designed a pipeline to perform the neces-
sary operations. Regarding the ’review/text’ transformation,
we employed the ‘nltk‘ library to tokenize the text, remove
punctuation, stopwords, and subsequently count the number
of words.
The correlation coefficient between the two variables is
0.3313 with a p-value < 0.05, indicating a statistically sig-
nificant correlation. A graphical representation confirming
this correlation can be found in Figure 1. There is a positive
correlation observed until approximately 400 words, beyond
which the boxplot stabilizes. Consequently, we conducted
an analysis of the correlation within specific review length
groups. As a result (Table 1), we observed a positive and
statistically significant correlation for reviews with lengths
between 0 and 400 words. However, for reviews longer than
750 words, the correlation becomes negative and statistically
significant. For reviews falling in the intermediate range
(between 400 and 750 words), the correlation is negligible.
Conclusion: Our hypothesis is confirmed, but the correla-
tion is not very strong and varies depending on the length of
the review.

Fig. 1: Correlation between review length and helpfulness score for different review
length groups

Table 1: Correlation Coefficients and P-values for Different Groups

Group Number Correlation Coefficient P-value
400 0.2216 0.0000
750 -0.0188 0.2585
3000 -0.1418 0.0065

Hypothesis 2

This hypothesis investigates whether reviews containing a
higher number of positive sentiment words tend to receive
more helpfulness ratings.
Before testing this hypothesis, it is necessary to define what
is meant by "positive sentiment words". To do so, a Multino-
mial Naive Bayes classifier was trained on the dataset, with
adjustments made to consider words with a score greater than
3 as positive reviews and those with a score less than 3 as
negative reviews. Positive sentiment words were identified
by calculating the difference in word weights between the
positive and negative classes. Among these words, those

with weights greater than 0 were deemed positive sentiment
words. Only the top 800 words with the highest weights were
retained for further analysis.
Subsequently, the frequency of these positive sentiment
words was computed for each review. The correlation be-
tween the frequency of these words and review helpfulness
was then calculated. Given that the features do not follow a
normal distribution, the Spearman correlation coefficient was
used.
The result yielded a correlation coefficient of 0.318 with a
p-value < 0.05, indicating statistical significance in general.
However, the correlation value becomes negative for a num-
ber of words higher than 100, as shown in Figure 2.

Fig. 2: Correlation between the frequency of positive sentiment words and review
helpfulness

Hypothesis 3

H0 (Null Hypothesis): There is no correlation between the
rating of a review and its helpfulness score.
Similar to the previous hypothesis, we addressed missing
values and data transformations directly with a MongoDB
query. With the data prepared for analysis, we conducted
an initial examination of the distribution of votes across the
four rating categories. Figure 3 reveals a positive bias where
individuals tend to vote more for positive reviews than nega-
tive ones. Specifically, a significant portion of votes for rat-
ing 5 consists of reviews with a total vote count equal to 1.
This introduces bias into our results because, based on the
formula used to compute the helpfulness score, a small total
vote count would lead to a low helpfulness score. To mitigate
this, we retained only reviews with a total vote count greater
than 20.

Fig. 3: Distribution of votes across the four rating categories

The Spearman correlation coefficient between the two vari-

LIGARI ALBERTI ANDREOLI ANALYSIS OF AMAZON BOOK REVIEWS 4

ables is 0.5247, with a p-value of 0.0.
Conclusion: The hypothesis is confirmed as there is a pos-
itive and statistically significant correlation between the re-
view rating and helpfulness score. This finding is further
supported by the boxplot in Figure 4.

Fig. 4: Boxplot illustrating the correlation between review rating and helpfulness
score

Hypothesis 4

Hypothesis 4 explores the impact of individual users’ unique
personalities, personal preferences, and the potential for
anonymous users to underrate books on rating scores. We
tested this hypothesis by considering the rating score as the
primary metric and any records with missing values were ex-
cluded from the analysis. The hypotheses under examination
were as follows:
H0 (Null Hypothesis): The rating score is not influenced by
the user’s profileName. All rating scores are drawn from the
same distribution, implying equal means and variances for
each user’s rating scores.
H1 (Alternative Hypothesis): The rating score is affected
by the user, suggesting that each user’s rating scores follow
a distinct distribution.
For the sake of consistency, users with fewer than 20 reviews
were excluded from the analysis, as a limited number of re-
views cannot reliably estimate statistical measures.
The statistical test employed was ANOVA, which assesses
differences in means between user groups. The results
yielded an F-statistic of 1.5374 and a corresponding P-value
of 0.0670. These results indicate that although there may be
some variance in rating scores among different users, the ev-
idence to reject the null hypothesis (H0) and conclude that
user personalities significantly impact rating scores is not ro-
bust.
This conclusion is further supported by the accompanying
boxplot (Figure 5), which illustrates variations in the distri-
bution of rating scores across users. For what concerns the
anonymous users, they do not seem to underrate books. For
what

Fig. 5: Distribution of rating scores across users

Hypothesis 5

Hypothesis 5 examines the influence of book categories on
review scores. To test this hypothesis,we considered the rat-
ing score as the metric and removed missing values. two
competing hypotheses were established:
H0 (Null Hypothesis): Rating scores are not related to the
book categories, as all rating scores are drawn from the same
distribution.
H1 (Alternative Hypothesis): Rating scores are affected by
the book category, indicating that the rating scores of each
category follow different distributions.
As in the previous hypothesis, categories with fewer than 20
reviews were omitted for consistency. An ANOVA (Analysis
of Variance) test was conducted to assess the validity of these
hypotheses. The results of the test revealed an F-statistic of
0.177 and a P-value of 0.999. A low F-statistic value and
a P-value close to 1 suggest that there is not much varia-
tion between the means of different categories. Therefore,
we could not reject the null hypothesis (H0) and concluded
that book categories do not significantly impact rating scores.
This result was further supported by the accompanying box-
plot (Figure 6), which showed that the distribution of rating
scores was similar across categories.

Fig. 6: Distribution of rating scores across categories

Hypothesis 6

H0 (Null Hypothesis): There is no correlation between the
number of books published for a category (or publisher) and
the review score.
All data cleaning and transformation steps were executed us-
ing MongoDB’s aggregation pipeline to ensure efficient and
rapid computation. To reduce bias, we excluded categories
with fewer than 50 books and publishers with fewer than 20
books. The results are presented in Table 2.
Conclusion: The hypotheses are rejected as the metrics
reveal no significant correlation between the number of
books published for a category (or publisher) and the review
score in both cases. These results surprises us as we expected
the more important publishers to perform a more meticulous
selection of the books to publish, thus leading to a higher
average score.

Table 2: Correlation Values and P-values for Categories and Publishers

Variable Correlation Value P-value
Category -0.0806 0.558
Publisher -0.0673 0.151

Curiosity: We executed two complex MongoDB queries to

LIGARI ALBERTI ANDREOLI ANALYSIS OF AMAZON BOOK REVIEWS 5

answer two intriguing questions:

• Which are the best publishers? (i.e., those capable of
achieving average scores above 4.5 in multiple categories)

• In which categories are the best publishers focused?

The results of these queries are presented in Figure 7 and
Figure 8.

Fig. 7: Identifying the Best Publishers

Fig. 8: Categories Favored by the Best Publishers

5. SPARK HYPOTHESES TESTING

To showcase the feasibility of implementing data analysis
within a Big Data context, we opted to replicate some hy-
pothesis testing using Spark, focusing particularly on Hy-
potheses 1 and 3.

Hypothesis 1

Addressing this hypothesis involved several key steps:

• Compute the Helpfulness Score: This was straightfor-
wardly achieved by leveraging the ‘WithColumn‘ method
of the Spark DataFrame, creating a new column with the
updated values.

• Compute the Text Length: Text length computation was
accomplished by utilizing ‘regexp_replace‘ to eliminate
punctuation, along with ‘Tokenizer‘ and ‘StopWordsRe-
mover‘ to tokenize the text and remove stop words. Subse-
quently, a new column containing the text length was gen-
erated.

• Bucketize the Text Length: To address this requirement,
we utilized the ‘Bucketizer‘ class from Spark MLlib in
conjunction with a User Defined Function (UDF) to assign
appropriate labels to the classes.

• Compute the Correlation Coefficient: Finally, the cor-
relation coefficient was computed using the ‘Correla-
tion.corr‘ method from Spark MLlib, specifically the
Spearman correlation coefficient. The data was reshaped to
conform to the required format using ‘VectorAssembler‘.

Hypothesis 2

To examine this hypothesis, we utilized Spark MLlib’s capa-
bilities to build a Naive Bayes model. This model was trained
to identify positive words within the dataset. Following this,
we computed the occurrence of the top 800 most positive
words in each review.
We then obtained a Spearman correlation coefficient between
helpfulness score and number of positive words of 0.318.

Hypothesis 3

This hypothesis involved computing the helpfulness score
and correlation coefficient, both of which were calculated us-
ing the same methods described in the previous hypothesis.

Results

In all test cases, the results closely mirrored those obtained
in the local environment.

6. HELPFULNESS PREDICTION

Our ambitious objective was to build a model capable of pre-
dicting the helpfulness of a review based solely on the review
text. To create such a model, we first needed to convert the
text into a machine-readable format, a process known as fea-
ture extraction. Subsequently, we explored different models
to identify the one best suited for our needs, ultimately se-
lecting the most appropriate one.

Feature Extraction

Given the complexity of the problem, we opted to employ a
Word Embedding technique called Word2Vec, which converts
words into vectors of real numbers while preserving their se-
mantic meaning. We utilized the Gensim library to perform
this task, using the following parameters for the model:

• Size: 30 and 150
• Window: 5
• Min Count: 2
• Workers: -1

Consequently, each word is represented by a 30 (or 150) di-
mensional vector, and the average of these vectors for all
words in a review forms the vector representation of the re-
view.

Models

We evaluated three different models:Random Forest,Support
Vector Regressor (RBF kernel), andMulti-Layer Perceptron
(MLP). We employed theScikit-Learn library for model train-
ing and testing, utilizing the GridSearchCV class to perform
cross-validation on the training set to identify the best model
parameters. The results are presented in Table 3 and visual-
ized in Figure 9.

Table 3: Model Results

Model MSE RMSE R2

RF 0.0259 0.1609 0.2532
SVR 0.0279 0.1670 0.1955
MLP 0.0282 0.1680 0.1858

LIGARI ALBERTI ANDREOLI ANALYSIS OF AMAZON BOOK REVIEWS 6

Fig. 9: Model Results

The results and metrics used indicate that the Random For-
est model outperforms the others in terms of Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE). The
Random Forest model achieved the lowest MSE of approx-
imately 0.026 and RMSE of approximately 0.161, suggest-
ing that its predictions are the closest, on average, to the ac-
tual values. This implies that the Random Forest model of-
fers the best overall predictive performance among the three
models. To further enhance model performance, we exper-
imented with increasing the number of features from 30 to
150. However, the performance improvement was not sub-
stantial, so we chose to retain 30 features due to the optimal
balance between performance and computational cost.

Results Interpretation

Figures 10 and 11 aid in interpreting the results. The scatter
plot visually represents the distribution of errors, revealing
that the model tends to overestimate the helpfulness of re-
views with high helpfulness scores and underestimate those
with low scores. A comprehensive analysis of the underlying
causes of this behavior, particularly focused on the feature
engineering process, remains a subject for future investiga-
tion.

Fig. 10: Errors of the Best Model

The line plot, on the other hand, provides insights into the
meaning of a given helpfulness score by translating it into
Total Votes and Helpfulness Votes. The blue line represents
the values (Total Votes, Helpfulness Votes) corresponding to
a helpfulness score close to 0.8, while the red and green lines
represent values corresponding to a helpfulness score of 0.8
plus or minus the RMSE. For instance, for a base of 100 Total
Votes, the RMSE of our model corresponds to an excess or
deficit of approximately 13 votes.

Fig. 11: Translation of Helpfulness Score Errors

7. COMPLEX MONGODB QUERY

A MongoDB query is designed to identify the categories
that top publishers prioritize. It achieves this by filtering
out records with missing or zero review scores, as well as
those without publisher and category information. The query
then calculates the average rating for each combination of
category and publisher. Next, it groups the results by cat-
egory, gathering average scores and review counts for each
publisher within that category. The query also expands the
list of categories and eliminates categories or publishers with
review counts below a specified threshold.
Further analysis involves counting the number of categories
where the average rating exceeds 4.5 for each publisher. The
results are aggregated by category, and the total count is as-
sessed. Finally, the query sorts the outcomes in descending
order of the total count.
The python code that performs this query can be found at
this link, in the section Further analysis: which are the best
publishers?.

8. CONCLUSION

In summary, this study delves into the intricacies of online
book reviews and reveals essential insights for understanding
user preferences and review system dynamics. The research
highlights the critical importance of scalable data analysis
systems to efficiently deal with a Big Data context, and the
delicate balance between review length and sentiment. Users
tend to favor longer reviews, though excessive length can di-
minish their impact. The double investigation on positive
reviews, based both on rating and on the number of positive
words in a review, shows that the latter is found the more use-
ful the more positive it is. Surprisingly, user ratings appear to
be objective, providing reliable book evaluations. Addition-
ally, the study challenges the assumption that publisher expe-
rience directly correlates with user appreciation, showing no
correlation between the publisher size and its books average
ratings. The results of the prediction model are promising,
showing a RMSE 0.16 but there is still room for improve-
ment. Future work should focus on feature engineering to
further enhance prediction systems.

https://github.com/DavideLigari01/data-science-project/blob/main/notebooks/hypotesis_testing/hypothesis_6.ipynb

	1 Introduction
	2 Discovery
	3 Data Preparation
	4 Local Hypotheses Testing
	5 Spark Hypotheses Testing
	6 Helpfulness Prediction
	7 Complex MongoDB query
	8 Conclusion

