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Abstract — The early detection of heart diseases is crucial for reducing mortality, yet traditional diagnostic methods often fail to
identify conditions until advanced stages. Leveraging advancements in machine learning, this study presents two different models aimed
at enhancing heart disease detection from heart sound recordings. The models, MLP_Ensemble5 and MLP_Ensemble2, were developed
using advanced ensemble techniques and optimized to balance computational efficiency with diagnostic accuracy. MLP_Ensemble5
focuses on minimizing false normals, and MLP_Ensemble2 emphasizes overall performance and incorporates explainability measures
to aid medical professionals. The study utilizes a dataset of heart sound recordings, processed through steps of data preprocessing,
feature extraction using several spectral coefficients (MFCCs, Chroma STFT...), and feature selection to develop robust predictive
models. Despite promising results, the research faced limitations such as the small dataset size, leading to potential biases due to lack
of a validation set, and challenges in capturing complete cardiac cycles with the chosen extraction intervals. Moreover, the models’
explainability, necessitates further validation. Future work will focus on expanding the dataset, optimizing extraction intervals to
capture full cardiac cycles, exploring alternative feature extraction techniques, and enhancing model explainability to ensure clinical
applicability. This study demonstrates the potential of machine learning models in heart disease detection and underscores the need for
further research to overcome current limitations and enhance model reliability in clinical settings.

Keywords — Heartbeat Classification * Machine Learning * Audio Features ¢ Correlation Analysis * Ensemble Models
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fectively identifies various heart diseases, including cases
where no heart disease is present, while balancing model
complexity with result accuracy.

Considering the importance of early anomaly detection in
heartbeats, we also propose a lightweight model capable of
detecting anomalies in heartbeat recordings. This approach
allows individuals to use their smartphones to record their
heartbeats and check for anomalies, facilitating timely con-
sultation with a doctor for further diagnosis.

2. METHODS
2.1. Source of Data

The dataset for this project was obtained from a Kaggle
repository titled Dangerous Heartbeat Dataset (DHD) [1],
which in turn sources its data from the PASCAL Classify-
ing Heart Sounds Challenge 2011 (CHSC2011) [3]. This
dataset comprises audio recordings of heartbeats, catego-
rized into different types of heart sounds. Specifically, the
dataset consists of 5 types of recordings: Normal Heart
Sounds, Murmur Sounds, Extra Heart Sounds, Extrasys-
tole Sounds, and Artifacts.

Type of Sources

The dataset comprises audio recordings collected from
three distinct sources:

Type A: This subset includes recordings contributed by
the general public through the iStethoscope Pro iPhone
app. Users from diverse backgrounds and locations have
submitted these recordings, providing a wide range of heart
sounds in various conditions.

Type B: This subset consists of recordings obtained from
clinical trials conducted in hospitals using the DigiScope
digital stethoscope. These recordings are collected in con-
trolled environments, contributing to a high-quality dataset
for clinical applications.

Type C: This subset is a mixed collection that includes
recordings from both the iStethoscope Pro app and the
DigiScope digital stethoscope. Additionally, this subset
incorporates heart sound recordings sourced from various
publicly available datasets on the internet. This mixed
dataset is valuable for its diversity and comprehensiveness,
covering a broad spectrum of heart sound variations and
abnormalities.

These diverse sources ensure a robust dataset that supports
comprehensive analysis and improves the generalizability
of the heartbeat audio classification model.

Classes

Heart sounds can be categorized into different classes based
on their acoustic characteristics and clinical significance.
Accurate classification of these sounds is essential for di-
agnosing and treating a variety of cardiac conditions. The
primary categories include Normal heart sounds, Murmurs,

Extra Heart Sounds, Artifacts, and Extra Systoles. Under-
standing the distinct features and clinical implications of
each class is a crucial step before building a machine learn-
ing model to classify heartbeats. This phase is particularly
important for the identification of patterns that are char-
acteristic of specific classes, which in turn guides the se-
lection of features to extract from the audio. This knowl-
edge aids in identifying specific patterns and anomalies
within the heart sounds, leading to more precise and reli-
able model predictions.

Normal The Normal category includes recordings of typ-
ical, healthy heart sounds. These sounds exhibit the char-
acteristic “lub-dub, lub-dub” pattern, where “lub” (S1) rep-
resents the closing of the atrioventricular valves and “dub”
(S2) signifies the closing of the semilunar valves. In a nor-
mal heart, the time interval between “lub” and “dub” is
shorter than the interval from “dub” to the next “lub,” es-
pecially when the heart rate is below 140 beats per minute.
Most normal heart rates at rest fall between 60 and 100
beats per minute, though rates can vary from 40 to 140
beats per minute based on factors such as age and activ-
ity level. Recordings may include background noises like
traffic or radio sounds and may capture incidental noises
such as breathing or microphone contact with clothing or
skin. It contains both clean and noisy normal recordings,
the latter featuring significant background noise or distor-
tion, which simulates real-world conditions.

Figure 1 shows a sample of a normal heart beat audio. The
characteristic “lub-dub, lub-dub” pattern can be observed,
where the peaks represent the “lub” (S1) and “dub” (S2)
sounds of a healthy heart.

Amplitud
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Fig. 1: Sample of normal heart beat audio.

Murmur Heart murmurs are abnormal sounds during the
heartbeat cycle, such as a “whooshing, roaring, rumbling,
or turbulent fluid” noise, heard between the “lub” and
“dub” (systolic murmur) or between “dub” and “lub” (di-
astolic murmur). These murmurs are typically indicative
of turbulent blood flow in the heart and can signal vari-
ous heart conditions, some of which may be serious. It is
crucial to distinguish murmurs from the normal “lub-dub”
sounds since they occur between the primary heart sounds
and not concurrently with them. It also includes noisy mur-
mur data, which mimics real-world recording scenarios by
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Authors Models Features Results Anno Dataset

T. Alafif et al [2] 2D-CNN + transfer learning MFCC 0.89 Accuracy 2020 N, A

Noman et al [9] Ensemble CNN 1D time series + MFCC 0.89 Accuracy 2019 N, A

Rath et al [10] Ensemble (RF + MFO + XGB + EL) MFCC + DWT 0.87 Accuracy 2022 N, A

A.Razaetal [11] LSTM 1D time series 0.80 Accuracy 2019 N, M, ES

Chen et al [4] 2D CNN WT + Hilbert-Huang 0.93 Accuracy 2018 N, M, ES
W.Zhangetal [13] SVM Spectrogram 0.76 Precision 2017 N, M, EH, AR
SW. Deng et al [6] SVM DWT 0.76 Precision 2016 N, M, EH, AR
Our Model Ensemble Model (MLPs + RF) MEFCC + Chroma + ZCR  0.88 Accuracy 2024 AR, M, N, EH, ES

Table 1: Comparison of different models for classification. Legend: N: Normal, M: Murmur, EH: Extra Heartbeat, AR: Artifact, ES: Extra systoles, A: Abnormal

incorporating significant background noise and distortions.
Figure 2 shows a sample of a murmur heart beat audio.
The presence of additional sounds between the “lub” and
“dub” peaks can be observed, indicating the characteris-
tic “whooshing, roaring, rumbling, or turbulent fluid” noise
typical of heart murmurs.

Ampitude
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Fig. 2: Sample of murmur heart beat audio.

Extra Heart Sound Extra heart sounds are character-
ized by an additional sound in the cardiac cycle, produc-
ing patterns such as “lub-lub dub” or “lub dub-dub”. These
sounds can arise from physiological or pathological condi-
tions. For example, a third heart sound (S3) may indicate
heart failure or volume overload, while a fourth heart sound
(S4) can be associated with a stiff or hypertrophic ventri-
cle. Detecting these extra sounds is important for identify-
ing potential heart diseases early, allowing for timely inter-
vention and management. Figure 3 shows a sample of an
extra heart sound audio. The presence of additional peaks
within the normal “lub-dub” pattern indicates extra heart
sounds, which can be critical for diagnosing various heart
conditions.

Artifact The Artifact category consists of recordings
with non-cardiac sounds, including feedback squeals,
echoes, speech, music, and various types of noise. These
recordings generally lack discernible heart sounds and do
not exhibit the temporal periodicity typical of heartbeats at
frequencies below 195 Hz. Accurately identifying artifacts
is essential to avoid misinterpreting non-cardiac sounds as
pathological heart sounds, ensuring that data collection ef-
forts focus on genuine heart sounds. Figure 4 shows a sam-
ple of an artifact heart beat audio, there can be observed
that there is not a clear pattern in the audio.

Extra Heart Sound

004

002

Amplitude
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Fig. 3: Sample of extra heart sound audio.
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Fig. 4: Sample of artifact heart beat audio

Extra systoles Extra systoles refers to extra or skipped
heartbeats, resulting in irregular patterns such as “lub-lub
dub” or “lub dub-dub”. Unlike the regular extra heart
sounds, extra systoles are sporadic and do not follow a con-
sistent rhythm. These premature beats can occur in healthy
individuals, particularly children, but they may also be as-
sociated with various heart diseases. Identifying extra sys-
toles is crucial as they can be early indicators of cardiac
conditions that might require medical attention if they oc-
cur frequently or in certain patterns.

In the audio signal depicted in Figure 5, irregularities
within the normal “lub-dub” pattern are evident. These ir-
regularities manifest as additional peaks or skipped beats,
indicating extra systoles.

Comparison of Heart Sounds In Figure 6, a comparison
of the different classes of heart sounds can be observed.
As we can see, the “Artifact” signal appears erratic with no
consistent pattern, likely representing noise or interference
rather than true heart sounds.
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Fig. 5: Sample of extra systoles heart beat audio

The “Murmurs” signal shows irregular fluctuations in am-
plitude, which could indicate turbulent blood flow typically
associated with murmurs.

The signal for “Extra Heart Beat Sound” has occasional
spikes in amplitude that stand out from the baseline.

The “Normal” signal appears more uniform and regular
compared to the others, reflecting the expected rhythm of a
healthy heartbeat. FlInally, the signal for “Extra Systoles”
shows extra spikes at irregular intervals, indicating unex-
pected contractions of the heart muscle (systoles) occurring
outside the normal rhythm.

Amplitude

o 10000 20000 30000 40000 50000 60000
Time

Fig. 6: Comparison of the different classes of heart sounds.

Data Distribution

Figure 7, illustrates the significant class imbalance present
in the dataset, particularly for the ’Extrastole’ and "Ex-
trahls’ classes, which have far fewer samples compared to
other classes. This imbalance poses a challenge for the
classification task, as the model may struggle to learn and
accurately predict the underrepresented classes due to the
insufficient number of training examples. To mitigate this
issue, several strategies are employed (see Section 3.3).
Data augmentation techniques are applied to artificially in-
crease the size of the dataset by creating modified ver-
sions of the existing audio files through methods such as
pitch shifting, time stretching, and adding noise. Addi-
tionally, the original audio recordings are segmented into
smaller clips, which not only increases the number of sam-
ples available for training but also provides the model with
more varied examples of heart sounds, enhancing its ability
to generalize across different heart sound variations.

Furthermore, the effectiveness of oversampling and under-
sampling techniques is tested. Oversampling involves in-
troducing samples in the minority classes to increase their
representation in the training set, while undersampling in-
volves reducing the number of samples from the majority
classes to balance the dataset. The data is split into training
and testing sets with an 80% - 20% ratio, respectively.

A validation set is omitted due to the low number of sam-
ples available, ensuring that the maximum amount of data
is used for training and testing the model.
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Fig. 7: Number of samples per duration.

2.2. Data Preprocessing

To prepare the data several preprocessing operations were
performed:

Noise Reduction: the audio data was already provided in
a clipped format to minimize noise and irrelevant informa-
tion.

Normalization: the audio are loaded using the forchau-
dio.load() function, which normalized the audio signals in
the range [-1, 1].

Removal of Corrupted Files: corrupted files were identi-
fied and removed from the dataset to ensure data quality.

Outlier Detection and Removal: we investigated the av-
erage duration of each class and found the ’artifact’ class to
have a significantly larger average duration. This was due
to a few long lasting audio recordings (see Figure 8). A
large number of samples from the same audio might not be
as informative, thereby we used IQR to detect and remove
outliers.

Resampling: we evaluated two sampling rates to deter-
mine the optimal rate for heartbeat sounds and all audio
files were resampled to a common frequency of 4000 Hz
(see Section 2.3).

Segmentation: the audio data was segmented into 1-
second intervals, identified as the optimal extraction inter-
val (see Section 2.3), as it offered both good performance
and dataset size increasing.

Hop and Window Size: the hop size determines the num-
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ber of samples between successive windows, while the
window size determines the number of samples considered.
Each feature was extracted using the same window length
and hop length facilitating a fair assessment of each fea-
ture’s contribution to the classification task.

Duration Boxplot
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Fig. 8: Outliers in the Artifacts class.

2.3. Feature Extraction

As demonstrated by [11] and [5], MFCCs are highly ef-
fective features for heartbeat classification. In addition to
MFCCs, we incorporated other features to capture various
characteristics of heart sounds, enhancing the classification
accuracy. The features used are explained in the following
section.

Features Type

MFCC

Mel-Frequency Cepstral Coefficients (MFCCs) are rep-
resentations of the short-term power spectrum of sound.
They are derived by taking the Fourier transform of a sig-
nal, mapping the powers of the spectrum onto the mel scale,
taking the logarithm, and then performing a discrete cosine
transform. MFCCs are effective in capturing the timbral
texture of audio and are widely used in speech and audio
processing due to their ability to represent the envelope
of the time power spectrum. In heartbeat classification,
MFFCs can reflect the different perceived quality of heart
sounds, such as the presence of murmurs or other anoma-
lies.

Chroma STFT

Chroma features represent the 12 different pitch classes of
music. They are particularly useful for capturing harmonic
and melodic characteristics in music. By mapping audio
signals onto the chroma scale, these features can identify
pitches regardless of the octave, making them useful for
analyzing harmonic content in heart sounds.

RMS

Root Mean Square (RMS) measures the magnitude of vary-
ing quantities, in this case, the amplitude of an audio sig-
nal. It is a straightforward way to compute the energy of
the signal over a given time frame. RMS is useful in audio

analysis for detecting volume changes and can help identify
different types of heartbeats based on their energy levels.
For example, in a given timeframe the RMS may be altered
by the presence of a murmur with respect to a normal heart
sound.

ZCR

Zero-Crossing Rate (ZCR) is the rate at which a signal
changes sign, indicating how often the signal crosses the
zero amplitude line. It is particularly useful for detect-
ing the noisiness and the temporal structure of the sig-
nal. In heartbeat classification, ZCR can help differenti-
ate between normal and abnormal sounds by highlighting
changes in signal periodicity.

CQT

Constant-Q Transform (CQT) is a time-frequency repre-
sentation with a logarithmic frequency scale, making it
suitable for musical applications. Since it captures more
detail at lower frequencies, it may be useful for analyzing
the low-frequency components of heart sounds.

Spectral Centroid

The spectral centroid indicates the center of mass of the
spectrum and is often perceived as the brightness of a
sound. It is calculated as the weighted mean of the frequen-
cies present in the signal, with their magnitudes as weights.
In heart sound analysis, a higher spectral centroid can indi-
cate sharper, more pronounced sounds, while a lower cen-
troid suggests smoother sounds.

Spectral Bandwidth

Spectral bandwidth measures the width of the spectrum
around the centroid, providing an indication of the range
of frequencies present. It is calculated as the square root
of the variance of the spectrum. This feature helps in un-
derstanding the spread of the frequency components in the
heart sounds, which can be indicative of different heart con-
ditions.

Spectral Roll-off Spectral roll-off is the frequency below
which a certain percentage of the total spectral energy lies.
It is typically set at 85% and helps distinguish between har-
monic and non-harmonic content. In heartbeat classifica-
tion, spectral roll-off can be used to differentiate between
sounds with a concentrated energy distribution and those
with more dispersed energy.

Sampling Rate Selection

The sampling rate of the data were heterogeneous, ranging
from 4000 Hz to 44100 Hz, with a majority of the data
being sampled at 4000 Hz. To assess the impact of the
sampling rate on the classification performance, we trained
different models on different features, extracted at different
sampling rates and from various intervals. Each model is
then evaluated using different metrics, taking into account
the class imbalance issue. We also considered a possible
dependency between the sampling rate and the extraction
interval, as shown in Algorithm 1.

The results, reported in Figure 9 showed no evident advan-
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Algorithm 1 Sampling rate and Interval choice

: Input:

: features = [mfcc30 & 120, cqt30 & 70, chromal?]
: sampling_rates = [mix, 4000]

: extraction_intervals = [0.5, 1, 2, 3]

: models = [rf, svm-rbf, 1r]

: metrics = [macrofl, mcc]

A AW =

7: for sr in sampling_rates do
8: for interval in extraction_intervals do
9: for feature in features do
10: extract feature with interval at sr
11: for model in models do
12: train model with extracted feature
13: for metric in metrics do
14: evaluate model with metric
15: Output:
16: Given all the results, group by model and average the values
of a specific metric across features and intervals

tage to using a mix of sampling frequencies over a fixed
resampled sample rate. Moreover, employing a fixed sam-
ple rate of 4000 Hz reduces the risk of introducing bias,
enhances efficiency, and permits the use of a broader range
of features and models.

macrof1 Scores by Model and Sample Rate - All Intervals AVG

Random Forest SVM

_— mix
4000

=]
-

o
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o
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o

Logistic Regression

Q.0

Fig. 9: Comparison of the macro F1 score for different sampling rates.

Extraction Interval Selection

The extraction interval refers to the duration of the audio
segment from which the features are extracted. Using algo-
rithm 1, we evaluated the performance of 0.5, 1, 2, and 3-
second intervals on the classification task. It is important to
note that the interval choice affects the number of samples
available for training and evaluation, so in case of a limited
number of samples, this choice should no be based solely
on the performance of the model. The results, showed that
a 2-second interval yielded the best performance, however
it also reduced the number of samples, impeding a correct
training and evaluation of the models. As a consequence,
we picked a 1-second interval as a compromise.

Number of Features per Type

Now the focus is on identifying the optimal number of fea-
tures for different types of audio features (MFCC, Chroma,

CQT, etc.). Each type of feature can consist of a varying
number of individual features, and it is crucial to deter-
mine the optimal number to maximize the model’s perfor-
mance. Proper feature selection is vital because it directly
impacts the efficiency, accuracy, and generalizability of the
machine learning model. Including too many features can
lead to overfitting, increased computational costs, and de-
graded performance due to the curse of dimensionality. On
the other hand, using too few features can result in underfit-
ting, where the model fails to capture the necessary patterns
in the data. Therefore, the goal of this study is to identify
the optimal number of features for each type to ensure the
model is both robust and efficient.

Determining the Optimal Number of Features To
maximize the model’s performance, it is crucial to deter-
mine the optimal number of features for each type. This
was achieved using a ‘One Model per Feature’ approach,
which involved the following steps:

Algorithm 2 Feature Optimization Process

1: Step 1: Extract feature sets with varying sizes: 12, 20,
30, 40, 60, 70, 90, and 120 features for each type.

2: Step 2: For each feature set, train three classifiers:
SVM, Random Forest, and Logistic Regression.

3: Step 3: Evaluate the performance of each model.

Figure 10 shows the results obtained for each type of fea-
ture with the Random Forest model, which significantly
outperformed the other classifiers. From the figure, we can
observe the following trends for each feature type:

e MFCC: The MFCC features consistently achieved
the highest F1 scores, peaking around 0.7. This in-
dicates their effectiveness for the classification task.
Interestingly, the number of MFCC features (ranging
from 30 to 120) did not drastically affect performance,
suggesting that even a smaller set of MFCC features
can be highly informative.

¢ CQT: The CQT features showed moderate perfor-
mance, with F1 scores around 0.4 to 0.5. The opti-
mal number of features was around 70, beyond which
there was no significant improvement.

* RMS: RMS features exhibited F1 scores ranging from
0.4 to 0.5, with optimal performance achieved with
around 70 features.

e ZCR, Spectral Centroid (SC), Spectral Bandwidth
(SB), and Spectral Roll-off (SR): The F1 scores for
these features generally stabilized around 0.4 to 0.5.
Increasing the number of features beyond 40 did not
result in significant performance gains and could even
degrade the model’s performance. This suggests that
adding too many features, especially those without
strong predictive power, can confuse the model and
degrade its performance.
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F1 score comparison for different feature types
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Fig. 10: F1 score per number of features

Optimal Number of Features Based on the results, the
optimal number of features for each type is shown in Table
2.

Feature Type Optimal Number of Features
MFCC 30
Chroma 12
CQT 70
RMS 40
ZCR 40
Spectral Centroid 40
Spectral Bandwidth 60
Spectral Roll-off 40

Table 2: Optimal number of features for each type

2.4. Feature Selection

Given the large number of features (338 in total), it was
necessary to identify and remove features that are poorly
correlated with the target variable as well as those that are
highly correlated with each other. Due to the high number
of features, a visual approach, such as a correlation matrix,
was not feasible. Instead, two filters were applied to select
the most relevant features using the Spearman correlation
coefficient, as the normality test failed.

The first filter is based on the correlation between the
features and the target variable. Features with a correlation
below a certain threshold with the target variable are
removed.

The second filter focuses on the correlation among the
features themselves. It counts, for each feature, the number
of other features with which it has a correlation above a
certain threshold. Features with a number of correlations
above a specified threshold are then removed.

Algorithm 3 Feature Selection Process

1: Step 1: Compute the normal test (D’Agostino Pear-
son).

2: Step 2: Compute the Spearman correlation coefficient
for each feature with the target variable.

3: Step 3: Apply the first filter to remove features with
a correlation below a certain threshold with the target
variable.

4: Step 4: Compute the correlation matrix among all fea-
tures.

5: Step 5: Apply the second filter to remove features that
have a high number of correlations (above a certain
threshold) with other features.

6: Step 6: Choose threshold values empirically and apply
the filters using various combinations of these thresh-
olds.

7. Step 7: Train Random Forest models on the filtered
data to evaluate performance and select the best com-
bination of thresholds.

Threshold Selection and Model Evaluation

Threshold values were chosen empirically and the filters
were applied using the combinations shown in Table 3. Us-
ing the filtered data, Random Forest models were trained
and evaluated, as Random Forest was found to be the best
performing model. The optimal combination of thresholds
was found to be: threshold 1 = 0, threshold 2 = 0.6 and
number of features = 30, resulting in 41 features.

Threshold Values

THRESHOLD1 0-0.1-02-0.3-04-0.5
THRESHOLD 2 0.6-0.7-0.8-09-1

N° FEATURES 5-10-15-20-25-30-40

Table 3: threshold values

With threshold 1 = 0, the filter on the correlation between
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the features and the target variable was effectively by-
passed. However, with threshold 2 = 0.6, a stringent filter
was applied on the correlation among the features them-
selves, removing features that had a correlation above 0.6
with at least 30 other features. This indicates that having
features highly correlated with each other is more detri-
mental to the model than having features poorly correlated
with the target variable.

Figure 11 shows the results obtained with the model trained
on filtered features compared to the model trained on all
features. As demonstrated, the model trained on filtered
features performs significantly better.

Best Filter vs No Filter
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Fig. 11: Comparison of different metrics between the model on all features and the
model on the filtered ones

Selected Features and Correlation Matrix

From this analysis, 41 features remained: 28 MFCC, 12
Chroma, and 1 ZCR. The correlation matrix of the filtered
features is shown in Figure 12. This matrix illustrates the
pairwise correlation between the selected features, with the
color intensity indicating the strength and direction of the
correlation. Dark red cells represent high positive correla-
tions, while dark blue cells indicate high negative correla-
tions.

The matrix demonstrates that the remaining features have
low correlations with each other, as evidenced by the pre-
dominantly light colors away from the diagonal. This im-
plies that the features are relatively uncorrelated, prevent-
ing multicollinearity issues and enhancing the robustness
of the model. The high diagonal values indicate that each
feature is perfectly correlated with itself, which is expected.
However, the off-diagonal values being close to zero for
most feature pairs confirm that the filtering process was ef-
fective in selecting features that do not exhibit high inter-
correlations.

2.5. Models
Metrics

In this project, various metrics evaluate the heartbeat audio
classification model, focusing on multiclass classification
with imbalanced classes.

Correlation matrix
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Fig. 12: Correlation matrix of the filtered features

Accuracy Accuracy measures the ratio of correct predic-
tions to the total number of predictions:

Correct Predictions

Accuracy =
y Total Predictions

It is straightforward but can be misleading with imbalanced
classes.

Balanced Accuracy Balanced accuracy addresses class
imbalance by averaging recall across classes:

1Y TP
Balanced Accuracy = — Z —_—
N /= TP, +FN;
where N is the number of classes, T P; is true positives, and
F'N; is false negatives for class i.

Matthews Correlation Coefficient (MCC) MCC evalu-
ates performance by considering all classes:

MCC — Yk Xt Xon CekCim — Cra Gk

\/ Y (X1Cur) (Xw 2k X Corr) \/ Yo (X1Ci) (Xwzk X Crwe)

This comprehensive metric accounts for true and false pre-
dictions, making it robust for imbalanced datasets.

Precision and Recall Precision measures the accuracy of
positive predictions:

TP
TP+FP
Recall measures the proportion of actual positives correctly
identified:

Precision =

TP
TP+FN
Micro variants aggregate these metrics across all classes,
while macro variants average them per class, offering in-
sights into individual class performance.

Recall =
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F1 Score The F1 score balances precision and recall:

F1 Score — 2 x Precision x Recall

Precision + Recall

Micro and macro variants provide overall and class-specific
performance evaluations, respectively.

ROC Curve and AUC For binary classification, the
ROC curve plots true positive rate against false positive
rate, and AUC summarizes the model’s discriminatory abil-
ity, with higher AUC indicating better performance.

Risk Score The risk score evaluates the model’s ability
to avoid misclassifying heart disease as normal:

FP

Risk score = ————
FrP+TP

A lower risk score indicates better performance. Disease-
specific risk scores can provide detailed insights into dif-
ferent heart conditions.

Prevention Model

The goal of the prevention model is to provide an accessi-
ble tool for the early diagnosis of heart diseases, potentially
usable by non-experts. Therefore, it is crucial to develop a
model that minimizes the number of false normal predic-
tions to accurately indicate the presence or not of disease
or identify artifacts in the provided data.

To achieve this, different heart diseases were grouped to-
gether, transforming the problem into a 3-class classifica-
tion task: normal, disease, and artifact. Grouping the dis-
eases not only simplified the classification but also bal-
anced the class distribution. The data was divided into
training and testing sets in an 80-20 ratio, and various mod-
els were evaluated, as shown in Table 4.

The primary metrics for evaluating the models were the
ROC-AUC score, false positive rate (FPR), and true pos-
itive rate (TPR), with F1-score and accuracy as secondary
metrics. To adapt binary metrics for multi-class classifica-
tion, the one-vs-rest strategy was employed. Specifically,
we focused on the normal-vs-rest case to minimize false
normal predictions.

In summary, each model was trained on the 3-class classifi-
cation problem but was evaluated based on its binary classi-
fication performance (normal-vs-rest). The best model was
selected based on its ROC-AUC score and performance at
specific FPR levels (1%, 5%, 10%, and 20%). The objec-
tive was to minimize false normal predictions while maxi-
mizing true normals. A model predicting no cases as nor-
mal to achieve a 0% FPR would be ineffective.

Support Model

In addition to the Prevention model, we developed a com-
plementary model designed to assist clinicians in diagnos-
ing heart diseases. This model aims to accurately classify
all classes present in the dataset, avoiding any simplifica-
tions, to ensure comprehensive diagnostic support.

Given the highly imbalanced nature of the dataset, where
certain classes contain significantly fewer samples, tradi-
tional accuracy metrics can be misleading. To address this,
we explored various balancing techniques, but they did
not yield satisfactory results. Consequently, we prioritized
metrics that provide equal importance to all classes, includ-
ing the macro F1-score, balanced accuracy, and Matthews
Correlation Coefficient (MCC). These metrics collectively
offer a robust evaluation by accounting for class imbalance,
ensuring that minority classes receive adequate considera-
tion alongside majority classes.

A particular emphasis was placed on the "Normal’ class,
focusing on minimizing false positives. This is crucial for
patient safety, as misclassifying abnormal heart sounds as
normal could lead to missed diagnoses and delayed treat-
ment. To address this concern, we introduced a 'Risk score’
that quantifies the impact of normal false positives, allow-
ing the model to be more sensitive to this critical aspect.
This score was further adapted to evaluate individual dis-
eases, enhancing our ability to assess the model’s risk for
each specific condition.

The selection of the best model was guided by the macro
F1-score and balanced accuracy. These metrics compre-
hensively reflect performance across all classes, ensuring
that no disease category is overlooked. After identifying
the optimal model, we employed explainability techniques
to elucidate the model’s decision-making process. This
step is crucial because the model’s outputs directly impact
patient care; therefore, transparency and interpretability are
essential. By providing clinicians with insights into how
the model arrives at its conclusions, we enhance trust and
facilitate informed clinical decisions.

To achieve this, we computed feature importance using
Permutation Feature Importance, which, according to A.
Fisher et al.[7], highlights the most influential factors driv-
ing the model’s predictions.

Additionally, we applied SHAP (SHapley Additive exPla-
nations) values, introduced by Scott M. Lundberg and Su-
In Lee [8], to interpret the model’s output at the individual
prediction level. SHAP values provide a detailed break-
down of each prediction, illustrating the impact of specific
features on the model’s decision. Based on the SHAP val-
ues, we identified the areas in the audio signal that signifi-
cantly influenced the model’s classification.

By integrating these explainability techniques, we ensure
that the model’s decision-making process is transparent and
comprehensible. This not only builds confidence among
clinicians but also ensures that the model’s outputs are ac-
tionable and reliable in a clinical setting.

2.5.1. Experimented Architectures

The architectures of the models used in the experiments
are detailed in Table 4. Special attention is given to the en-
semble models, which combine predictions from multiple
models to enhance overall performance.

All MLP_Ensemble models consist of the individual mod-
els listed in their architecture name. These models’ predic-
tions are combined using a soft voting strategy, where the
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Name Architecture (hidden layers)
Random Forest -

XGBoost -

CatBoost -

LightGBM -

MLP_Basic (128, 64, 32)

MLP_Ultra (512, 256, 128, 64, 32)
MLP_Large (256, 128, 64, 32)
MLP_Small (64, 32)

MLP_Tiny (32, 16)

MLP_Reverse
MLP_Bottleneck

MLP_Rollercoaster

MLP_Hourglass
MLP_Pyramid
MLP_Wide
MLP_WideUltra
MLP_Sparse
MLP_Dropout
MLP_Ensemblel
MLP_Ensemble2
MLP_Ensemble3
MLP_Ensemble4
MLP_Ensemble5
MLP_Ensemble6
ALL_Ensemble

(32, 64, 128, 256, 512, 256, 128, 64, 32)
(512, 64, 32)

(512, 128, 256, 128, 256, 64, 32)

(512, 256, 128, 64, 32, 64, 128, 256, 512)
(1024, 512, 256, 128, 128, 128, 64, 32)
(1024, 1024)

(1024, 1024, 128, 32)

(32, 16, 8)

(128, 64, 32)

MLP_Basic, Large, Ultra

RandomForest, MLP_Ultra
MLP_Rollercoaster, Large
MLP_Rollercoaster, Large, Ultra
RandomForest, MLP_Ultra, Rollercoaster
MLP_Rollercoaster, Large, Ultra, Wide
All models majority vote

CB_ALL_Ensemble  All models CatBoost

Table 4: Models names and architectures.

final prediction is determined by the argmax of the sum of
the predicted probabilities from each model. This approach
is effective when the models are well-calibrated and exhibit
complementary strengths and weaknesses.

The ALL_Ensemble model aggregates the predictions of
all individual models using a majority vote strategy. In con-
trast, the CB_ALL_Ensemble model also considers all in-
dividual models but uses a CatBoost model to aggregate the
predictions. This allows for a more flexible voting strategy,
potentially leading to improved performance.

2.6. Tools and Software

This study utilized several powerful libraries and tools for
data processing, model training, and evaluation:

¢ Scikit-learn: Used for MLP, RF, and metrics such as F1,
Balanced Accuracy, Accuracy, MCC, ROC, AUC, per-
mutation importance, train-test split, confusion matrix
and voting classifiers.

¢ Torchaudio: Used to load the audio, for MFCC extrac-
tion and audio resampling.

e Librosa: Used for other features extraction and audio
processing and augmentation.

e Imblearn: Applied for handling imbalanced datasets
with techniques such as undersampling, oversampling,
and SMOTEN.

* Numpy: Essential for numerical computations and array
manipulations.

* Pandas: Crucial for data manipulation and analysis.

* Matplotlib: Employed for creating visualizations.

* Seaborn: Used for statistical data visualization.

* Scipy: Utilized for scientific and technical computing.

* XGBoost: Implemented for gradient boosting models.

e CatBoost: Applied for gradient boosting on decision
trees.

e PyTorch: Used for developing and training CNN mod-
els, specifically VGG16_bn.

¢ TensorFlow: Used for building and training deep learn-
ing models, including CNNs.

e Keras: High-level API for building and training neural
networks on TensorFlow.

» Shap: Utilized for model interpretability.

¢ Other Utility Libraries: Includes joblib for model se-
rialization, and os, sys for system operations and file
handling.

3. RESULTS
3.1. Prevention Model

The initial evaluation is presented using the ROC curves
of the normal class versus the others for selected
models.  According to Figure 13, the MLP mod-
els outperformed the other models, as indicated by
the higher AUC values. Specifically, MLP_Ensemble5
achieved the highest AUC value of 0.96, followed by
MLP_Ultra, MLP_Rollercoaster, MLP_Ensemble2, and
MLP_Ensemble4, all with an AUC of 0.95.

ROC curve

08

06

True Positive Rate

04
—— Random Forest (AUC = 0.92)
XGBoost (AUC = 0.93)
—— MLP (AUC = 0.93)
—— CalBoost (AUC = 0.94)
p MLP_Ultra (AUG = 0.95)
02 7 —— MLP_rollercoaster (AUG = 0.95)
o MLP_Ensemble2 (AUC = 0.95)
MLP_Ensembisd (AUC = 0.95)
MLP_WideUltra (AUC = 0.94)
MLP_Bottleneck (AUC = 0.94)
—— MLP_Ensemble5 (AUC = 0.96)
Perfect Classifier

0.0

00 02 04 06 08 10
False Positive Rate

Fig. 13: ROC curves for the normal class against the rest of the classes across all
models.

To further analyze model performance, we selected four
significative FPR levels (1%, 5%, 10%, 20%) and calcu-
lated the corresponding TPR. The consolidated results are
shown in Figure 14.

At each FPR level, MLP_Ensemble5 outperformed the
other models, achieving TPRs of 43.4%, 74.3%, 86.6%,
and 95.8% at the 1%, 5%, 10%, and 20% FPR lev-
els, respectively. Excluding MLP_Ensemble5, the best-
performing model varied by FPR level: MLP_WideUltra
at 1%, MLP_Ultra at 5%, MLP_Ensemble2 at 10%, and
MLP_Ensemble4 at 20%.
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Models Performance with different accepted FPRs - Normal VS Rest
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Fig. 14: TPR at different FPR levels for all models.

These outcomes highlight the task’s challenges in creat-
ing a model that performs well across all FPR levels and
demonstrate the efficacy of a well-built ensemble model,
which leverages the strengths of different models to achieve
optimal performance.

Best Model Analysis

To understand the performance of the ensemble model (de-
tailed architecture depicted in Figure 25), we compared its
confusion matrix against the confusion matrices of the in-
dividual models that compose it (Figure 15).

Random Forest MLP_Ultra

0 1 2 0 1 2

True

MLP_Rollercoaster

MLP_Ensemble5

Predicted
Fig. 15: Confusion matrices of the individual models and the ensemble model.

In the confusion matrix, class 2 represents normal heart-
beats, class 1 represents abnormal heartbeats, and class 0
represents artifacts. The Random Forest and MLP_Ultra
models exhibit complementary strengths: the Random For-
est works better in recognizing normal samples, while the

MLP_Ultra model performs better in identifying abnormal
samples. The ensemble model effectively combines these
strengths.

The contribution of the MLP_Rollercoaster model to the
ensemble’s performance is less apparent but has been ex-
perimentally demonstrated. This may be due to its ability
to correctly classify some samples that are misclassified by
the other models.

Notably, the MLP_Ultra model classifies fewer abnormal
heartbeats as normal compared to the MLP_Ensemble5
model. However, this is because the MLP_Ultra model
simply classifies fewer samples as normal. Minimizing the
false positive rate (FPR) for the normal class by classify-
ing all samples as abnormal would result in a very low true
positive rate (TPR) for the normal class. This highlights
the importance of analyzing FPR and TPR together.

In conclusion, the ensemble model is the most effective
for classifying normal heartbeats, abnormal heartbeats, and
artifacts, achieving an optimal trade-off between FPR and
TPR.

3.2. Support Model

The support models are evaluated using several metrics, in-
cluding macro F1 score, accuracy, balanced accuracy, and
MCC. The results are depicted in Figure 16.

From the figure, it is evident that accuracy tends to be
higher than other metrics for all models, indicating a po-
tential bias as it overestimates model performance.
Among the models, the MLP ensembles generally show su-
perior performance compared to individual models. No-
tably, the MLP_Ensemble2 model exhibits the highest per-
formance, with a macro F1 score of 81.58 and an MCC
of 81.53. This suggests that ensemble models effectively
leverage the strengths of individual models to achieve op-
timal performance. The risk of misclassifying an abnormal
sample as normal is depicted in Figure 17, which shows
the overall risk scores (in blue) for each model. The graph
also displays specific risk scores associated with each class,
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Models Comparison TEST SET

XGBoost 871 7148 76.70
CatBoost 85.14 7429 72.88 78.79
LightGBM 84.12 7258 6974 77.30
MLP_Basic 7763 7744 75.39 &
MLP_Uitra 8668 8139 8002 80.76
MLP_Small 7341
MLP_Tiny 70.60
MLP_Reverse 7393 -8
MLP_Bottieneck 7951
MLP_Rollercoaster 77.40
MLP_Hourglass. 78.08
MLP_Pyramid 78.97
WLP_Wide 7754 -7
MLP_WideUlira 7661
NLP_Sparse 7344
MLP_Dropout 8957 7365
MLP_Ensemble 7971 79.14 79.67
MLP_Ensembie2 8158 7923 8153 -
MLP_Ensembied 7778 76.96 78.34
MLP_Ensembled 78.25 77.43 80.12
MLP_Ensembies 8061 7963
MLP_Ensembies 7965 7772 80.08
AL Ensemble 8068 78.63 81.90
7962 76.52 ®

CatBoost_ALL_Ensemble

TestAce Macro F1 Balanced Accuracy mee

Fig. 16: Metrics of the Support Models, computed on the test set

representing the probability of predicting a sample of that
class as normal.

This stacked bar chart helps compare the height of the dif-
ferent colors rather than their areas. From the figure, it’s
clear that no single model consistently outperforms oth-
ers across all scores,but the performance varies across the
scores. For instance, MLP_Rollercoaster has the best over-
all risk score (blue) and excels in murmurs risk score (red),
while MLP_Ensemble3 performs best for extra systoles
risk (orange).

Risk Score for each model
= Risk Score
- urmur Risk
Extrastole Risk
- Extrahis Risk
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Fig. 17: Risk Scores of the Support Models
Best Model

The MLP_Ensemble2 model stands out as the best-
performing model among the support models. To thor-
oughly understand its performance, we computed the con-
fusion matrix on the test set, which is depicted in Figure
18. The confusion matrix reveals that the model excels in
recognizing artifacts (class 0) and extra heartbeat (class 1).
However, it tends to confuse murmurs (class 2) and extra
systoles (class 4) with normal heartbeats (class 3). To fur-
ther investigate this anomaly, we analyzed the mean values
of the features within each class, as shown in Figure 19.
The mean values represent the centroids of the classes in
the feature space, providing insights into the distribution of
the classes. The analysis indicates that artifacts and extra
heartbeats have distinctly different mean values compared
to other classes, while murmurs, extra systoles, and normal
heartbeats exhibit similar mean values. To visualize this
better, we employed T-SNE to map the features into a 2D

MLP_Ensemble2 - TEST SET

0

o 252 1 [ 6 0
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- 1 “ [ 3 o
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200
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- 0 [ 2 2 )

-0
o 1 2 3 4

Fig. 18: Confusion Matrix of the MLP_Ensemble2 model. Columns represent the
true classes, while rows represent the predicted classes. Class 0: Artifacts, Class 1:
Extra heartbeats, Class 2: Murmurs, Class 3: Normal, Class 4: Extra systoles.
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Fig. 19: Mean values for each feature within each class

space, as shown in Figure 20.

T-SNE Visualization of the Features
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Fig. 20: T-SNE visualization of the features

The T-SNE visualization confirms the clear separation be-
tween artifacts and extra heartbeats from the other classes,
while murmurs, extra systoles, and normal heartbeats are
overlapped. This suggests that the features employed are
not sufficiently distinct to differentiate normal heartbeats
from murmurs and extra systoles, explaining the model’s
tendency to confuse these classes.
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Explainability

To gain insights into the model’s decision-making process,
we computed the feature importance using permutation im-
portance, as shown in Figure 21. The figure reveals that
the most important features are the MFCCs, particularly
MEFCC 3, 4, 8, and 6. The fact that the lower MFCCs
are most important, suggest that the to distinguish between
classes the model doesn’t require fine details of the audio
signal. Surprisingly, the zero crossing rate and chroma fea-
tures are less important, indicating that the model relies
heavily on the MFCCs to make predictions.

Permutation Importance of Features

00

“"‘“\limnmmm LLLLLLLLLL

MFCC
MFCC 4

Fig. 21: Feature Importance computed with Permutation Importance

To provide a more intuitive understanding of the model’s
decision-making process, especially for clinicians who
may need an explanation of the model’s decisions, we iden-
tified the areas of the waveform most important for the
model’s prediction. This was done by first identifying the
most important features for the classification of a single
sample.

Once the most important MFCCs were identified, we plot-
ted the waveform of the sample along with these MFCCs.
By observing the values of the MFCCs, we can pinpoint
the areas of the waveform that are critical for the model’s
decision. Figures 22 and 23 illustrate this process for a sin-
gle extra heartbeat sample.

For this sample, the most important features are MFCC 8§,
6, and 3. The bar plot shows that MFCC 8 and 6 have neg-
ative values, while MFCC 3 has a positive value, indicating
that the significant areas of the waveform are where MFCC
3 is high and the others are low.

3.3. Other Experiments

To further explore the classification problem, we conducted
additional experiments involving CNN-based feature ex-
traction, data augmentation, and a novel approach using a
tiered ensemble model.

CNN-Based Experiments

We conducted a series of experiments using Convolutional
Neural Networks (CNNs) to explore their effectiveness as
feature extractors for the 5-class classification problem.

MFCC 8 +0.16

MFCC 6 +0.12

MFCC 3 +0.11

MFCC 4 +0.11

MFCC 5 +0.05

MFCC 15 +0.03

ZCR 22 +0.03

MFCC 18

vrcc 7 [ +o-02
vrcc 11 [ 002
vrcc 28 [ +002

mrcc 13 [ +o.01
mrcc17 [ +o.01

mrcc 16 [ +0.01

+0.02

Sum of 27 other features +0.07
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Fig. 22: Feature importance for a single extra heart beat sample
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Fig. 23: Waveform of an extra heart beat sample, with most important MFCCs

The CNN was used with ImageNet weights and was not
fine-tuned.

* VGG16 with Spectral Features: VGG16 CNN was
employed as a feature extractor with spectral features
(MFCC, CQT, Chroma STFT, among others) used as in-
put images. This approach yielded a Macro F1 score of
approximately 65%, which is lower than the performance
achieved in the primary work.

* VGG16 with Raw Waveform Images: VGG16 was also
used to extract features from raw waveform images. Fea-
tures were taken from the 5th, 4th, and 3rd convolutional
layers after pooling, and various classifiers (RF, SVM,
MLP) were tested on these features. This method re-
sulted in a performance of around 67%.

Data Augmentation

We explored data augmentation techniques to address the
limited and imbalanced dataset and improve the model’s
generalization capabilities.

* Noise Addition and Speed/Pitch Alteration: We aug-
mented the data by adding random noise (factor 0.05)
and altering speed and pitch. However, the improvement
in performance was not significant. This may be due to
the limited size and inherent imbalance of the dataset, as
data augmentation did not alter the class distribution.

* Synthetic Data Generation with SMOTEN: Synthetic
data generation was applied to the less represented
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classes using SMOTEN. Although there was an initial
spike in performance metrics, this was identified as bias.
The model could easily distinguish the synthetically gen-
erated data from the original data. The underlying issue
was the limited size of the original dataset, which did not
provide sufficient variability for the synthetic generation
algorithm to produce realistic and diverse samples.

Tiered Ensemble Model

We attempted to decompose the classification problem into
two sub-problems, according to Figure 24.

e Sub-problem 1: Artifact, Normal, and Abnormal
Classification: Various models were tested for distin-
guishing between artifact, normal, and abnormal audio.
The best model (MLP_Ensemble5) achieved a balanced
accuracy of approximately 89.2%.

* Sub-problem 2: Disease Classification: Different mod-
els were also applied to distinguish between different dis-
eases, achieving a balanced accuracy of more than 90.3%
with MLP_Ensemble2.

¢ Final Ensemble Model: A third model (CatBoost) was
used to integrate the predictions from the above sub-
problems and make the final classification among the five
classes. This ensemble approach resulted in a balanced
accuracy of 80.5%.

Input Data

Model 1 Model 2

Intermediate Predictions l \
Artifact Disease

N

Artifact

e - ) {
Disease A Disease B Disease C Normal

// MOd‘T 3

Disease B

Disease A Disease C Normal

Fig. 24: Tiered Ensemble Model

Despite the promising results, the tiered ensemble model
did not outperform the primary models.

4. DISCUSSION

In our research, we developed two ensemble models,
MLP_Ensemble5 and MLP_Ensemble2, to address the
dual purpose of enhancing prevention and diagnosis (sup-
port model) of heart disease. For MLP_Ensemble5, our
focus was on minimizing false normals, ensuring that po-
tential heart diseases are not overlooked. On the other
hand, MLP_Ensemble2 aimed to maximize overall predic-
tive performance while incorporating explainability to pro-
vide valuable insights to medical professionals.

Our experimentation involved various models and features,
with careful consideration of correlation aspects, to achieve
the best results. We utilized the PASCAL challenge dataset
and addressed the class imbalance problem by aggregating
diseases in one instance and employing appropriate metrics
in another.

Several studies have explored heart disease prediction us-
ing machine learning. Zhang et al. [13] utilized a Sup-
port Vector Machine (SVM) model with spectrogram fea-
tures, achieving a precision of 0.76, while Deng et al. [6]
used SVM with Discrete Wavelet Transform (DWT) fea-
tures, obtaining similar precision. Although these models
are computationally efficient, their performance is limited.
Advancements in deep learning, such as the Long Short-
Term Memory (LSTM) model used by Raza et al. [11]
with 1D time series features, achieved an accuracy of 0.80
with Normal, Murmur, and Extrasystole classes.
Significant improvements in accuracy were achieved using
Convolutional Neural Networks (CNNs) by Alafif et al.
[2] and Noman et al. [9], although they only considered
Normal and Abnormal classes. A more disease-specific
approach was taken by Chen et al. [4], who used a 2D
CNN model with Wavelet Transform and Hilbert-Huang
features, achieving an accuracy of 0.93 with Normal, Mur-
mur, and Extrasystole classes. This high accuracy high-
lights the potential for improving our support model, which
struggles to distinguish between Murmur, Normal, and Ex-
trasystole classes.

Direct comparisons between studies are challenging due to
differences in datasets and class definitions. Our model
uniquely considers five classes, making it distinct from oth-
ers. Furthermore, the choice of evaluation metrics is crucial
when dealing with imbalanced datasets, as accuracy can be
misleading.

Our research contributes to the literature by presenting
two models. MLP_Ensemble5 was optimized to minimize
false normals while maintaining low computational costs
and distinguishing between disease presence and artifact
signals. MLP_Ensemble2 was optimized for overall per-
formance and introduced explainability measures to assist
medical staff.

Despite these advancements, our project faced limitations.
The limited dataset size prevented the creation of a vali-
dation set, potentially biasing results. Additionally, to in-
crease data availability, we selected a one-second extrac-
tion interval, which may not be optimal due to varying heart
rates. This approach might result in samples lacking rel-
evant information if the full cardiac cycle is not present
within the interval.

Feature selection also posed challenges. While MFCCs
proved effective, they were not sufficiently discriminative
for distinguishing between Normal, Murmur, and Extrasys-
tole classes, where our model struggled the most. Further-
more, the explainability of the model has its constraints.
We identified significant temporal regions on the waveform
based on MFCC values within these regions. According
to SHAP values, these specific MFCC values help to clas-
sify the sample correctly. However, the model only under-
stands the average temporal values, not the instantaneous
ones. Consequently, the explanation provided by the model
is limited and requires further validation to be considered
reliable.

Finally, the representativeness of the dataset remains a ma-
jor obstacle to developing a model suitable for real-world
scenarios. Addressing these limitations in future research
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could enhance the applicability and reliability of our mod-
els in clinical settings.

5. CONCLUSION

In this project, we have developed a machine learning
model aimed at improving heart disease detection. Uti-
lizing advanced ensemble techniques, we optimized two
models : MLP_Ensemble5 and MLP_Ensemble2. The
MLP_Ensemble5 model was specifically fine-tuned to min-
imize false normals while maintaining low computational
costs. On the other hand, MLP_Ensemble2 focused on
overall performance and incorporated explainability mea-
sures to aid medical professionals in decision-making.
Despite the notable advancements, our project faced sev-
eral limitations. The size of the dataset constrained our
ability to create a validation set, which might have intro-
duced biases in the results. Additionally, the one-second
extraction interval used to increase data availability could
have resulted in missing critical information from complete
cardiac cycles. Feature selection posed another challenge,
as Mel Frequency Cepstral Coefficients (MFCCs), while
effective, were not sufficiently discriminative for certain
heart conditions like Murmur and Extrasystole.

Moreover, the model’s explainability, while a significant
feature, had limitations. The reliance on average temporal
values rather than instantaneous ones meant that the expla-
nations provided by the model were not always fully reli-
able and required further validation.

5.1. Future Works

Future research should address the limitations identified in
this project to enhance the model’s applicability and relia-
bility in real-world clinical settings. Specifically, expand-
ing the dataset and improving its representativeness will
be crucial. A larger and more diverse dataset will cap-
ture a wider range of heart sound variations, improving the
model’s ability to generalize across different patient popu-
lations and conditions. Collaborating with multiple health-
care institutions to collect more comprehensive data, which
includes diverse demographic and clinical characteristics,
will be essential.

Optimizing the extraction intervals to capture complete car-
diac cycles could lead to better model performance. The
current one-second intervals may miss critical information.
By adjusting extraction intervals to encompass entire car-
diac cycles, the model will analyze more comprehensive
heartbeat patterns, enhancing its accuracy in detecting sub-
tle abnormalities.

Exploring alternative feature extraction techniques is an-
other important area. While MFCCs have been effective,
they may not capture all relevant features of heart sounds.
Methods such as wavelet transforms or more complex neu-
ral features derived from deep learning models, such as
CNNs or RNNs, could also be explored to enhance fea-
ture extraction and model performance.

Finally, enhancing the model’s explainability will be es-
sential for its clinical adoption. Collaborating with medi-
cal professionals to analyze the results of the explainability
procedure will ensure the medical relevance of the identi-
fied waveform zones.
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6. APPENDIX
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Fig. 26: Architecture of the best Support Model
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