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Abstract — This study addresses the complex challenge of deciphering the relationships between symptoms and diseases in healthcare,
a crucial aspect for accurate diagnosis and predictive analytics. Employing network analysis, we blend theoretical and empirical
approaches to understand these relationships. Our work primarily focuses on exploring complex network configurations, utilizing
bipartite models and non-weighted edges to identify significant patterns in disease-symptom interactions. A key aspect of our research
is the application of novel metrics, inspired by Hidalgo’s works from 2007 and 2009, to classify symptoms based on their predictive
power and diseases based on their symptomatological complexity. These metrics, along with others like betweenness centrality and
community based ones, are instrumental in refining our predictive models and provide a avenue for computational complexity reduction.
Building upon this foundation, we delve into predictive modeling, aspiring to surpass existing benchmarks in the field. Our approach
centers on three proven machine learning models—Logistic Regression, Random Forest, and Multi-Layer Perceptron—each chosen for
their demonstrated effectiveness in disease prediction using symptomatic data, as evidenced in the studies by Kohli, Singh, and Uddin
(2019). Through this study, we aim to advance the understanding and capabilities in disease prediction, providing valuable insights for
the healthcare sector, and to evaluate a graph-based approach for the computational complexity reduction of predictive models.
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1. INTRODUCTION

I n the dynamic field of healthcare, understanding the
intricate relationships between symptoms and diseases

is crucial for precise diagnosis and predictive analytics.
This study delves into these complex interactions using
network analysis, blending theoretical frameworks with
empirical data. Our objectives are twofold: to unravel
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the complexities of these relationships and to identify key
features that enhance predictive modeling, and facilitating
computational efficiency improvement.
Central to our analysis are complex network configura-
tions, where we employ bipartite models and non-weighted
edges to discover significant patterns. We use a range of
network metrics, comparing our results with null models to
ensure statistical reliability. Our application of community
detection algorithms reveals hidden structures and rela-
tionships among diseases, enriching our understanding.
We leveraged metrics based on the work of Hidalgo and
Hausmann [5] and Hidalgo et al. [4], which help classify
symptoms and diseases according to their predictive
strength. These metrics, along with traditional ones like
betweenness centrality, are key in characterizing our
predictive models.
Building on this analytical groundwork, we venture into
predictive modeling with the goal of exceeding current
benchmarks. In line with research by Kohli and Arora [6],
Singh and Kumar [8], and Uddin et al. [12], which high-
lights the efficacy of Logistic Regression, Random Forest,
and Multi-Layer Perceptron algorithms in disease predic-
tion from symptomatic data, we focus on these models
for our analysis. Furthermore we propose a graph-based
approach for computational complexity reduction.

2. DATASET

The dataset used for this project is obtained from Kaggle
and is available at the following link. It comprises disease
names along with the symptoms reported by the respective
patients.
Overview: The dataset encompasses 773 unique diseases
and 377 symptoms, resulting in approximately 246,000
rows. It was artificially generated while preserving Symp-
tom Severity and Disease Occurrence Possibility.
Data Encoding: To facilitate model training, the dataset
utilizes one-hot encoding for each symptom, transforming
categorical symptom data into a binary format.
Class Imbalance: The original dataset exhibited signifi-
cant class imbalance, with some classes having only one
sample and others containing thousands. We addressed
this problem using Oversampling and Undersampling tech-
niques, and the details are further elaborated in Section 6a.
Data Cleaning: To allow consistent Oversampling, classes
(diseases) with fewer than three symptoms were excluded
from the dataset, resulting in the removal of 25 classes. Ad-
ditionally, diseases with no symptoms and symptoms with
no associated diseases were deleted as well.

3. GOALS

The final objective of this project is to develop a robust
machine learning model capable of predicting diseases
based on reported symptoms. In pursuit of this goal,
two specific objectives are outlined, both centered around
leveraging the network structure:

1. New Feature Extraction: Exploiting the network
characteristics and metrics, aiming to extract novel
features that can enhance the predictive capabilities of
the model.

2. Complexity Reduction: Leveraging network infor-
mation, we aim to reduce the number of symptoms,
retaining only the most relevant ones. This strategic
reduction aims to decrease training time while pre-
serving the accuracy of the model.

By integrating these two objectives, the project aspires to
not only advance the predictive capabilities of the machine
learning model but also optimize its efficiency in handling
the complexities inherent in disease prediction based on
symptoms.

4. NETWORK METHODOLOGY

In this section there is a technical description of the
methodology used to create and analyze the network.

a. Network Creation

Prior to graph creation, a preliminary data analysis was
conducted to identify isolated nodes. The analysis revealed
the presence of several symptoms, precisely 52 out of 377,
not associated with any disease. Consequently, these iso-
lated symptoms were removed from the graph as they do
not contribute informative content. Diseases without asso-
ciated symptoms were also removed for the same reason.
Additionally, an analysis of the node degree distribution
was performed to assess whether the distribution follows a
power law (see Section 5a).
Finally, a bipartite graph was created where nodes repre-
sent symptoms (lightcoral) and diseases (blue), and edges
denote the presence of symptoms in diseases. For sim-
plicity, the graph is unweighted. Figure 1 illustrates the
resulting bipartite graph. As showed, diseases tend to be
peripheral, while symptoms tend to be central. This ob-
servation arises from the fact that symptoms are shared by
multiple diseases, whereas diseases exhibit distinct symp-
toms. Furthermore, symptoms are fewer in number than
diseases, making it more likely for a symptom to be shared
among multiple diseases.
Figure 2 presents the unipartite graphs of symptoms and
diseases.

Fig. 2: Visual representation of symptom and disease unipartite graphs.

https://www.kaggle.com/datasets/dhivyeshrk/diseases-and-symptoms-dataset?select=Final_Augmented_dataset_Diseases_and_Symptoms.csv
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Fig. 1: Visual representation of the symptom-disease bipartite graph.

b. Method of Reflections

To identify influential nodes in the symptom-disease net-
work, we introduce two indices that capture the relative
importance of each actor. The first index, referred to as
the Symptom Influence (SI) index, not only ranks symptom
nodes based on their frequency (level-1) but also considers
whether a symptom is present in diseases affected by nu-
merous other symptoms (level-2) or in diseases affected by
only a few symptoms.
Conversely, the second index, known as the Disease Influ-
ence (DI) index, assesses the distinct symptoms related to a
disease (level-1) and whether a disease exhibits symptoms
that affect many other diseases (level-2).
In other words, level-1 of these indices quantifies the num-
ber of symptoms associated with a disease, while level-
2 measures the interconnectedness and broader impact of
symptoms or diseases within the network. For the Symp-
tom Influence (SI) index, level-2 takes into account the
presence of a symptom across diseases, shedding light on
whether a particular symptom tends to co-occur with a
wide range of other symptoms or is more specific to a sub-
set of diseases. This dual-level analysis provides a nuanced
understanding of the significance of symptoms based not
only on their individual prevalence (level-1) but also on
their associations with other symptoms across different dis-
eases (level-2). Similarly, for the Disease Influence (DI) in-
dex, level-2 assesses the extent to which a disease’s symp-
toms have ripple effects on other diseases, indicating the
potential for cascading impacts within the network.
We adapt the level-N indices following the approach of Hi-
dalgo et al.,[4] and Hidalgo and Hausmann,[5]. The level-N

indices are defined as:

SIv,N =
1

SIv,1
∑
u

W (v,u)DIu,N−1 (1)

DIu,N =
1

DIu,1
∑
v

W (v,u)SIv,N−1 (2)

Here, SIv,1 and DIu,1 represent the level-1 indices, and
W (v,u) denotes the edge weight between symptom v and
disease u. The level-1 indices are defined as follows:

SIv,1 = ∑
u

W (v,u) (3)

DIu,1 = ∑
v

W (v,u) (4)

Since our network is not weighted (W (v,u) = 1 if symptom
v is associated with disease u and W (v,u) = 0 otherwise),
SIv,1 and DIu,1 are equal to the degree of symptom v and
disease u, respectively.

Statistical Validation of SI and DI

In our effort to identify significant nodes within the
symptom-disease network, we focus on discerning topo-
logical properties that hold statistical significance. Our
goal is to differentiate higher-order properties that are di-
rectly associated with local node features from those that
emerge from the intricate interactions among nodes.
Relevant studies Squartini, Fagiolo, and Garlaschelli [11,
10] and Spelta, Pecora, and Pagnottoni [9] highlight how
higher-order network properties naturally capture struc-
tured group interactions. Here, a ‘group’ is defined as
all players connected by a ‘hyperlink’, representing the
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higher-order analog of a link.
The sampling of random graphs with specified properties
plays a pivotal role in network analysis, serving as funda-
mental null models for identifying patterns, including com-
munities and motifs.
To statistically assess the significance of SI and DI, we
adopt a hypothesis testing approach based on a null model.
Specifically, we posit H0 as the hypothesis that SI and
DI level-2 do not offer additional information compared to
level-1, and H1 as the opposite. To test these hypotheses,
we generate 5000 random networks using a null model with
the same level-1 properties as the original network.
With this ample set of null models, we assume that the
distribution of SI and DI is Gaussian, leveraging the Cen-
tral Limit Theorem (CLT). For each null model, we cal-
culate the mean (µ) and standard deviation (σ ) of SI and
DI and compute the z-score for each SI and DI level-2, as
expressed in the following equation:

zSIv,2 =
SIv,2−µSIv,2

σSIv,2
(5)

If H0 holds true,the z-scores of SI and DI should be nor-
mally distributed with a mean of 0 and a standard deviation
of 1. Conversely, if H1 is true, the z-scores of SI and DI
should be normally distributed with a mean and standard
deviation different from 0 and 1, respectively.

c. Betweenness Centrality

The betweenness centrality of a node v, as defined by Bran-
des [2], is calculated as the sum of the fraction of all-pairs
shortest paths that pass through v:

cB(v) = ∑
s,t∈V

σ(s, t|v)
σ(s, t)

(6)

where:

• V : The set of nodes.

• σ(s, t): The number of shortest paths from node s to
node t.

• σ(s, t|v): The number of those shortest paths from
node s to node t that pass through some node v other
than s and t.

• If s = t, then σ(s, t) = 1.

• If v ∈ {s, t}, then σ(s, t|v) = 0.

To compute the betweenness centrality, the NetworkX
function nx.bipartite.betweenness_centrality was utilized.
This function implements the algorithm proposed by Bran-
des [1], specifically designed for bipartite graphs, and in-
cludes proper normalization for accurate results.

d. Communities Detection

Prior to applying any community detection algorithm, two
crucial steps must be performed:

• Compute Similarity: The similarity between nodes
needs to be computed. For our purposes, a co-
occurrence matrix is created for each set of nodes.
Taking the example of the co-occurrence matrix for
symptoms, each entry si j represents the number of
times the symptom i and the symptom j co-occur in
the same disease.

• Graph Projections: The bipartite graph needs to be
projected into two separate graphs, one for each set of
nodes. In our case, the two sets represent symptoms
and diseases. To achieve this, the NetworkX func-
tion nx.bipartite.projected_graph is employed, return-
ing the projection of the bipartite graph onto the spec-
ified nodes.

Once the two graphs, with links weighted by node
similarity, are obtained, the community detection
algorithm can be applied. We utilized the Clauset-
Newman-Moore greedy modularity maximization
algorithm [3], implemented in the NetworkX function
nx.algorithms.community.greedy_modularity_communities.
This algorithm aims to find the partition of the graph that
maximizes modularity, defined by Newman [7] as:

Q =
1

2m ∑
i j

[
Ai j−

kik j

2m

]
δ (ci,c j) (7)

where:

• Q: Modularity of the network.

• Ai j: Element of the adjacency matrix representing the
connection between nodes i and j.

• ki and k j: Degrees of nodes i and j, respectively.

• m: Total number of edges in the network.

• δ (ci,c j): Kronecker delta function, which is 1 if ci
is equal to c j (i.e., nodes i and j belong to the same
community) and 0 otherwise.

• The sum is taken over all pairs of nodes i and j.

5. NETWORK RESULTS

a. Method of reflection

We conducted an in-depth analysis of the Symptom Influ-
ence (SI) and Disease Influence (DI) indices, considering
both level-1 and level-2 metrics in our symptom-disease
network.

Level-1 Metrics

For the level-1 metrics, which quantify the individual
prevalence of symptoms and diseases, we observed distinc-
tive patterns, as illustrated in Figure 3. The Symptom Influ-
ence (SI) at level-1, representing the number of diseases as-
sociated with a symptom, demonstrated a wide distribution,
ranging predominantly between 0 and 60. This suggests
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that certain symptoms exhibit a broad association with var-
ious diseases, showcasing the diverse nature of symptom-
disease relationships.
Conversely, the Disease Influence (DI) at level-1, reflect-
ing the number of symptoms related to a disease, exhibited
a narrower range, typically falling between 2 and 12. This
narrower range indicates that diseases tend to have a more
focused set of associated symptoms.

Fig. 3: Degree Distribution (level 1)

Level-2 Metrics

Moving to the level-2 metrics, which capture the intercon-
nectedness and broader impact of symptoms or diseases
within the network, we uncovered intriguing patterns (see
Figure 4). The Symptom Influence (SI) at level-2, reflect-
ing the presence of symptoms across diseases and their as-
sociations with other symptoms, exhibited values ranging
from 4 to 12. This suggests that certain symptoms not only
co-occur within diseases but also form meaningful connec-
tions with a diverse set of other symptoms. A higher level-2
Symptom Influence (SI) implies a symptom’s propensity to
be associated with a wide range of symptoms, indicating its
potential impact on various disease pathways.
On the other hand, the Disease Influence (DI) at level-2,
quantifying the ripple effects of a disease’s symptoms on
other diseases, demonstrated a wider range, typically span-
ning from 10 to 80. This broader range signifies that certain
diseases have a more extensive influence on the network by
affecting a multitude of other diseases. A higher level-2
Disease Influence (DI) implies that a disease’s symptoms
not only contribute to its immediate associations but also
have far-reaching consequences, affecting a network of in-
terconnected diseases.
These results highlight the diverse roles played by symp-
toms and diseases in influencing the network when consid-
ering higher-order interactions.

Fig. 4: L2 Distribution for both symptoms and diseases

Power Law CCDF

In our statistical validation of the Symptom Influence
(SI) and Disease Influence (DI) indices at both level-1
and level-2, the analysis of the complementary cumula-
tive probability distribution (CCDF) reveals distinctive pat-

terns.
For level-1 diseases, the CCDF power-law behavior ex-
hibits a rapid decrease, indicating that a small number of
diseases have a disproportionately high influence. This
steep decline suggests the presence of disease hubs that
significantly impact the network dynamics. Conversely,
for level-1 symptoms, the power-law CCDF demonstrates
a slow decrease, starting at 0 and extending until 100. This
suggests a more distributed influence of symptoms across
diseases, with a considerable number of symptoms exhibit-
ing varying degrees of prevalence. The gradual decline in
the CCDF emphasizes the diverse roles played by symp-
toms in the network.
Level-2 diseases, on the other hand, exhibit a slower power-
law decrease, starting at 50 and reaching zero around 90.
This gradual decline implies that a broader range of dis-
eases contributes to the interconnectedness within the net-
work, with a subset of diseases exerting influence across
multiple others.
Finally, for level-2 symptoms, the power-law CCDF dis-
plays a rapid decrease around 10, emphasizing the exis-
tence of highly influential symptoms that play a pivotal role
in connecting various diseases.

Fig. 5: Power Law Distribution of the level 1 and level 2 metrics

Statistical Validation of SI and DI

In our statistical validation of the Symptom Influence (SI)
and Disease Influence (DI) indices at level-2, we aimed to
discern whether these higher-order metrics provide addi-
tional information compared to level-1, and whether this
information is statistically significant. Our null hypothesis
(H0) posited that level-2 metrics do not offer additional in-
sights beyond level-1, while the alternative hypothesis (H1)
suggested the opposite.
Upon generating 5000 random networks with the same
level-1 properties as the original network, we calculated
z-scores for both Symptom Influence (SI) and Disease In-
fluence (DI) at level-2.
Remarkably, the z-score distribution (Figure 6) for both
symptoms and diseases exhibited a shape quite similar to
a Gaussian distribution, with means close to zero.
For symptoms, the z-scores ranged between -4 and 3, indi-
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cating that the level-2 Symptom Influence (SI) values were
generally lower than the mean but still within a reasonable
range. This suggests that, on average, symptoms tend to
exhibit a level-2 influence that aligns closely with the over-
all network structure.
Similarly, for diseases, the z-scores ranged from -3 to 4,
signifying that the level-2 Disease Influence (DI) values
were distributed around the mean. This implies that dis-
eases, on average, have a level-2 influence that aligns with
the overall network structure, showcasing a balance be-
tween localized effects and broader impacts.
The proximity of the mean to zero in both distributions sug-
gests that, on average, the level-2 metrics for both symp-
toms and diseases do not significantly deviate from the null
model. However, the broader range of z-scores signifies
the presence of nodes with both positive and negative devi-
ations, underscoring the heterogeneous nature of influences
within the symptom-disease network.
In conclusion, our statistical validation reinforces that
while the level-2 metrics follow a distribution akin to a
Gaussian, the nuanced deviations reflected by the z-scores
for both symptoms and diseases underscore the diverse and
context-dependent nature of their influences within the in-
tricate network structure.

Fig. 6: Probability Density Function of the z-scores

b. Betweenness Centrality

The examination of betweenness centrality in our bipartite
network, as depicted in Figure 7, reveals a Power Law Dis-
tribution, indicative of a scale-free structure. This implies
the presence of a few central nodes that act as pivotal con-
nectors, while the majority of nodes exhibit lower between-
ness centrality.

Fig. 7: Betweenness Centrality CDFs

Upon dissecting the centrality values into symptoms and
diseases (see Figures 8 and 9), a notable observation
emerges: symptoms tend to have higher betweenness cen-
trality compared to diseases. To decipher the significance
of this result, it’s essential to delve into the interpretation
of betweenness centrality.

Fig. 8: Betweenness Centrality of the diseases

Fig. 9: Betweenness Centrality of the symptoms

In general, a symptom exhibits high betweenness centrality
when it is linked to numerous diseases, and these diseases,
in turn, are connected to a relatively limited set of symp-
toms. Conversely, a disease attains high betweenness cen-
trality when it connects to numerous symptoms, and these
symptoms are associated with relatively few diseases.
Analyzing our results of L1 and L2, it becomes evident that
the higher betweenness centrality of symptoms is attributed
to their connections with a multitude of diseases, while dis-
eases, on the contrary, are linked to a relatively limited
number of symptoms. From a predictive standpoint, this
outcome may present a challenge as each symptom is not
sufficiently specific, contributing to a broad array of dis-
ease classes.
Figure 10 highlights the top 10 nodes with the highest be-
tweenness centrality, all of which are symptoms. As antici-
pated, these symptoms are more generic in nature, aligning
with their central role in connecting various diseases.

Fig. 10: Top 10 nodes with the highest betweenness centrality
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c. Communities

The identification of communities within the network
serves a dual purpose – facilitating network interpretation
and enhancing the capabilities of our ML prediction model.
From a network interpretation perspective, communities
offer insights into disease-symptom relationships. A com-
munity of symptoms signifies a set of symptoms that fre-
quently co-occur within the same diseases, while a com-
munity of diseases identifies a set of diseases often co-
occurring within the same symptoms. The sizes of different
communities are illustrated in Figure 11.

Fig. 11: Sizes of the communities of symptoms and diseases

For clinical relevance, examining symptoms communities
provides valuable information about diseases associated
with these symptoms. This is exemplified in Figures 12, 37,
and 38. As an example, in the symptoms’ community 1
(Figure 12), ‘burn’ has 12 symptoms, which makes it a spe-
cific disease for community 1, considering that on average
each disease has only three symptoms from that commu-
nity.

Fig. 12: Community 1 of symptoms

A similar study can be conducted for communities of dis-
eases, as depicted in Figures 13, 39, 40. This informa-
tion aids in profiling diseases and understanding the sig-
nificance of each symptom. For instance, in community
1 of diseases (Figure 13), the symptom ‘sharp abdominal
pain’ is present in almost half of the diseases in the com-
munity, indicating its generic nature and limited discrimi-
natory value.

Fig. 13: Community 1 of diseases

Transitioning to the creation of features for the ML model,
two types of features were developed:

• Community Count: This feature counts how many
symptoms of the symptom vector belong to each com-
munity. Each symptom community is characterized
by different pointed diseases. The model can learn
to prioritize diseases associated with the community
with the highest count.

• Community Size: This feature replaces each symp-
tom in the symptom vector with the size of the com-
munity to which the symptom belongs. It enables the
model to distinguish between symptoms belonging to
small and large communities. If many symptoms from
small community are present, the associated diseases
may be more likely.

It is noteworthy that communities can also contribute to
improving the computational efficiency of the model. For
example, a symptom associated with many diseases may be
less informative and could potentially be removed from the
symptom vector. However, we opted for a comprehensive
approach using a combination of L1 and L2 measures to
address this issue (next section)

d. Most Important Actors

As previously mentioned, our objective extends beyond
feature extraction; we aim to leverage network information
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to enhance the computational efficiency of the model. The
strategy involves reducing the number of symptoms, retain-
ing only the most significant ones, to decrease training time
while maintaining high accuracy. Various approaches were
tested, including L1, L2, betweenness centrality, and the
degree of the unipartite projection of symptoms. To se-
lect the most appropriate approach, we examined the cor-
relation between these features (Figure 14). Indeed, a high
correlation between features means that they provide simi-
lar information, and therefore retaining both features would
be redundant. On the other hand, a low correlation between
features indicates that they provide complementary infor-
mation, and this enhances in a considerable way the quality
of the choice.
For this reason, as clearly shown in Figure 14, we decided
to use L1 and L2 to discriminate among the symptoms in a
more effective manner.
To practically create the classes, we need to define thresh-
olds for L1 and L2. We decided to consider a symptom
as important for the prediction of specific diseases if it is
present in less than 0.5 times the average of L1 diseases,
translating into a threshold of 8.21 for L1. Consequently,
we adjusted the L2 threshold to maintain a proper balance
between the classes, setting it to 8.

Fig. 15: Symptoms divided into the four classes

Fig. 16: Division based on L1 and L2 values

As demonstrated in Figure 15, the four classes have
different sizes, and more importantly, they provide very

different and valuable information.
To shed light on these classes, a brief reminder of the mean-
ings of L1 and L2 is warranted. L1 denotes the number of
diseases associated with a symptom, whereas L2 quantifies
the number of symptoms linked to those diseases. As a
result, we categorize the features into the following classes:

• Low L1 - Low L2: Symptoms with low degree and
low L2. These symptoms are connected to few dis-
eases which are also connected to few other symp-
toms. Therefore, we can expect this symptoms to pro-
vide a high contribution to the prediction of few spe-
cific diseases.

• Low L1 - High L2: Symptoms with low degree and
high L2. For these symptoms, the same reasoning as
above applies, but with lesser strength. Indeed, these
symptoms are connected to few diseases, but those
diseases are connected to many other symptoms.

• High L1 - Low L2: Symptoms with high degree and
low L2. These symptoms may be important for the
overall performance of the model. For instance, a
symptom may be associated with many diseases, but
those diseases may only be associated with that symp-
tom. In this case, the symptom is very important for
prediction. Since these symptoms are connected to
many diseases, they can be considered important for
the overall performance of the model, even if they are
not crucial for the prediction of specific diseases.

• High L1 - High L2: Symptoms with high degree and
high L2. As for the previous class, these symptoms are
not very specific of a diseases, but we can expect them
to be important for the overall accuracy of the model,
since they provide information about many diseases.

As it stands it may not be clear which are the category
of symptoms we can get rid of. One can think that the
symptoms having bot L1 and L2 low can be the most
useful, since they are specific, thus very informative. At
the same time the symptoms having both L1 and L2 high
can be the least useful, since a symptom actually appears
in many diseases, thus doesn’t provide much information.
However we should consider also the model viewpoint.
Indeed, if we retain only the symptoms with both L1
and L2 low, we end up having information about only
few diseases, and the model may not be able to learn the
patterns of the other diseases, leading to a poor result
in the overall accuracy. To investigate this aspect, once
again we adopted a greedy approach, starting from evenly
distributed classes, and starting retaining features from
the most promising one. This procedure, whose limits are
discussed in Section 9a, was applied to the best model and
the results are analyzed in Section 7d.
Figures 15 and 16 illustrate the division of symptoms into
the four classes. The same entire analysis was conducted
for diseases, in this case focusing on the high-L1-high-L2
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Fig. 14: Correlation between features

class, which contains the most complex diseases under a
symptomatology perspective. The results are reported in
Figures 42 and 41.
To provide a complete picture of the most specific symp-
toms we report the composition of the low-L1-low-L2
class in Figure 17. As we can see there are many symptoms
which occur in just one disease. Their presence should
make their associated diseases the most probable one. As
an example, ‘vulvar sore’ is only present in the diseases
‘poisoning due to antihypertensives’.

6. ML MODEL METHODOLOGY

This section provides a comprehensive overview of the
methodologies employed in the construction of the ma-

chine learning model. The discussion encompasses vari-
ous techniques designed to handle the intricacies of model
building, coupled with a logical flow that guides the entire
process.

a. Preliminary Data Preparation

Before delving into model development, a data prepro-
cessing pipeline was employed to properly prepare them
for the subsequent steps, facing the problems of class
imbalance and training computational complexity.

• Random Sampling: Given the extensive nature of hy-
perparameter tuning, we adopted a random sampling
strategy, picking around 10% of the dataset. Instead
of training the models on the entire dataset for each
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Fig. 17: Composition of the low-L1-low-L2 class for symptoms

hyperparameter combination, the random subset was
used to expedite the tuning phase without sacrificing
model representativity.

• Class Imbalance with Oversampling and Under-
sampling: The dataset was highly unbalanced across
its 700 disease classes. To mitigate this, a combina-
tion of oversampling and undersampling techniques
was applied. The former was performed for minor-
ity classes, while the latter was applied to the majority
classes, ensuring all the diseases were adequately rep-
resented during training, preventing dominance and
biases in the model.

b. Feature Extraction

A pivotal phase in constructing a machine learning model
is feature extraction. In addition to the one-hot vector
representation of symptoms, the network analysis affords
us the following features:

• L1 and L2 Measures: A vector with values repre-
senting the L1 and L2 measures for each symptom.

• Betweenness Centrality: A vector with values denot-
ing the betweenness centrality of each symptom.

• Community Count: A vector indicating the number
of symptoms belonging to each community.

• Community Size: A vector replacing symptoms with
the size of the community to which they belong.

Given the diverse scales of these features, normalization
becomes imperative for their cohesive integration into the
model without introducing biases. To achieve this, we
opted for MaxAbs normalization. This normalization scales

each feature individually, ensuring that the maximal abso-
lute value of each feature in the training set becomes 1.0,
while preserving the sparsity of data.

c. Model Choice

In the expansive landscape of machine learning, numerous
classification models are available for disease prediction.
Our selection narrows down to three models renowned for
their robust predictive capabilities, as substantiated by the
findings of Kohli and Arora [6], Singh and Kumar [8], and
Uddin et al. [12]. These models are Logistic Regression,
Random Forest, and Multilayer Perceptron (MLP).

Logistic Regression

Multinomial Logistic Regression, also known as softmax
regression, extends logistic regression to multi-class clas-
sification problems. It models the probability of each class
as a function of the input features. The model is given by:

P̂(Y = k|x) = ew⊤k x+bk

∑
K
j=1 ew⊤j x+b j

(8)

where x is the input feature vector, wk is the weight vector
for class k, bk is the bias term for class k, and K is the total
number of classes.
The output P̂(Y = k|x) is the estimated probability that the
input x belongs to class k. The model predicts the class
with the highest probability as the output:

ŷ = argmax
k

{
P̂(Y = k|x)

}
(9)

Multinomial logistic regression is widely used for classifi-
cation problems where the output can belong to more than
two discrete classes. It is a generalization of binary logis-
tic regression and retains its properties as a linear model,
making it interpretable and efficient for high-dimensional
datasets.
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• Strengths: Logistic Regression’s computational effi-
ciency makes it an attractive choice for initial explo-
ration and baseline performance assessment. Its sim-
plicity facilitates interpretability, providing insights
into the impact of individual symptoms on disease
prediction.

• Considerations: While efficient, Logistic Regression
assumes a linear relationship between features and the
log-odds of the target, potentially limiting its ability to
capture complex non-linear patterns.

Random Forest

A Random Forest is an ensemble learning technique used
primarily for classification. It constructs a multitude of de-
cision trees during training and integrates their outcomes
to improve the final prediction accuracy. The classification
decision in a Random Forest is based on the majority vot-
ing system among all trees. The prediction for a class label
ŷ for an input vector x is given by:

ŷ(x) = mode{T1(x),T2(x), . . . ,TB(x)} (10)

where B is the number of trees in the forest, and Tb(x) is
the prediction of the bth tree. The Random Forest algo-
rithm improves classification accuracy by reducing overfit-
ting, a common problem in individual decision trees. This
is achieved by creating diversity in the trees through ran-
dom selection of features and samples, and then aggregat-
ing

• Strengths: Random Forest is renowned for its robust-
ness in handling large and diverse datasets, making it
well-suited for our expansive dataset with 700 disease
classes. Moreover, Its ability to capture non-linear re-
lationships ensures that complex patterns within the
symptoms’ one-hot encoded features are effectively
modeled.

• Considerations: The ensemble nature of Random
Forest provides resilience against overfitting, a crucial
factor in the context of disease prediction.

Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) is a type of feedforward
artificial neural network, commonly used for classification
tasks. It consists of multiple layers of nodes: an input layer,
one or more hidden layers, and an output layer. The output
of each layer is computed as:

h(l) = f (W(l)h(l−1)+b(l)) = f (z(l)) (11)

where h(l) is the output of the lth layer, W(l) and b(l) are
the weights and biases of the lth layer, respectively, and f
is a nonlinear activation function.
For classification, the final layer typically uses a softmax
activation function to output a probability distribution over
the classes. The class with the highest probability is se-
lected as the model’s prediction. The softmax function in

Fig. 18: Operative Flow of the ML Model

the output layer for a classification problem with K classes
is given by:

softmax(z)i =
ezi

∑
K
k=1 ezk

for i = 1, . . . ,K (12)

where z is the input to the softmax function, typically the
output of the last hidden layer of the network. The final
output y is given by:

y = argmax
{

softmax(z(L))
}

(13)

where L is the total number of layers. The MLP is trained
using backpropagation, adjusting its weights and biases to
minimize the error in its predictions for the training data.

• Strengths: MLPs are adept at capturing intricate rela-
tionships in high-dimensional datasets, aligning with
the complexity inherent in our 300-feature symptom
representation.

• Considerations: Their capacity for adapting to non-
linear mappings positions MLPs as powerful tools in
unraveling the nuanced interactions between symp-
toms and diseases.

d. Operative Flow

Once the features are ready, the core part of the model-
building process can begin. The operational flow was quite
complex, and it is summarized in Figure 18.
We trained three different models: a Logistic Regression,
a Random Forest, and a Multi-Layer Perceptron (MLP).
For each model, we faced the challenge of selecting
both the best hyperparameters and the most effective
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features. The interdependence between these two aspects
makes the optimal approach to explore all the possible
combination of features and for each combination trying
all the hyperparameters combination. This approach is
not feasible in terms of computational effort leading us
to adopt a greedy approach whose limits are explained in
Section 9a. We firstly split the features into two groups:
the symptoms’ one-hot vector and the remaining features.
The former is used to train a base model, while the latter is
utilized to explore the potential improvement brought by
the new features.
Using Algorithm 1, we determined the best feature com-
bination for each group (symptoms and other features).
Subsequently, given the optimal feature combination, we
identified the best Hyperparameters combination using
Algorithm 2. Each model was then trained with the
best hyperparameters and the best features combination.
For each group of three models available at this point (3
models with symptoms and 3 models with other features),
we selected the best one according to their accuracy value
(Section 7a). Only at this point the two winning models
were trained with the whole dataset to provide a more
precise evaluation of their performance and were compared
to assess the result of our first Goal.
As regard the last Goal, the best between the above two
models undergone the feature reduction process discussed
in Section 5d and its computational time was compared to
the one of the full features model.

Algorithm 1 Feature Selection Algorithm
1: RemainingFeatures← AllFeatures
2: FeatureSet← EmptySet
3: BestAccuracies← EmptySet
4: Parameters← InitializeRandomParameters
5: i← 0
6: while RemainingFeatures is not Empty do
7: BestAccuracy← 0
8: for each feature in RemainingFeatures do
9: CurrentFeatureSet← feature ∪ FeatureSet

10: Model← EmptyModel
11: TrainModel(odel, CurrentFeatureSet, Parameters)
12: CurrentAccuracy← GetAccuracy(Model)
13: if CurrentAccuracy >= BestAccuracy then
14: BestAccuracy← CurrentAccuracy
15: BestFeature← feature
16: BestAccuracies[i]← BestAccuracy
17: RemainingFeatures←RemainingFeatures−BestFeature
18: FeatureSet← BestFeature ∪ FeatureSet
19: BestFeatureCombinations[i]← FeatureSet
20: i← i + 1
21: BFC ← BestFeatureCombina-

tions[ArgMax(BestAccuracies)]
22: return BFC

The quest for optimal hyperparameters (hparams) in ma-
chine learning models is often constrained by computa-
tional resources. In light of these limitations, we adopted
a resource-efficient greedy search strategy to navigate the
vast hyperparameter space. Our approach unfolds in sev-
eral stages. Initially, we randomly initialize hyperparam-

eters (hparams) to initiate the search. Subsequently, we
employ a stepwise exploration, beginning with the first hy-
perparameter. For this, we perform an initial search over
a small set of values (e.g., 0.001, 0.01, 1, 10, 100). If
the optimum lies at one of the extremes, we extend the
search to encompass values in the corresponding direction.;
conversely, if it resides within an intermediate range, we
conduct a more focused exploration in a narrower interval.
This process is iteratively repeated for each hyperparam-
eter, gradually refining our understanding of the optimal
regions within the hyperparameter space. This iterative ap-
proach serves a dual purpose. First, it conserves compu-
tational resources by avoiding an exhaustive search over
all potential combinations. Second, it capitalizes on the
information gleaned from earlier iterations to guide subse-
quent searches efficiently. By strategically determining the
next set of values based on the observed trends, we strike
a balance between exploration and exploitation, ultimately
converging to a set of hyperparameters (hparams) that max-
imizes model performance. This resource-conscious strat-
egy is paramount when computational resources are lim-
ited, allowing us to derive meaningful results within prac-
tical constraints.

Algorithm 2 Greedy Hyperparameter Search

1: hparams← randomInitialization
2: for each hparam in hparams do
3: src_range← initialSrcRange
4: bestVal← curr_hparams[hparam]
5: accuracy← 0
6: for value in src_range do
7: curr_hparams[hparam]← value
8: performance← eval(model, curr_hparams)
9: if performance better than accuracy then

10: bestVal← value
11: accuracy← performance
12: if bestVal is at the lower extreme then
13: src_range← extendSrcRangeLower(bestVal)
14: else if bestVal is at the upper extreme then
15: src_range← extendSrcRangeUpper(bestVal)
16: else
17: src_range← narrowSrcRange(bestVal)
18: for value in src_range do
19: curr_hparams[hparam]← value
20: performance← eval(model, curr_hparams)
21: if performance better than accuracy then
22: bestVal← value
23: accuracy← performance
24: curr_hparams[hparam]← bestVal

At the conclusion of these procedures, we obtained the
following two models:

• Symptoms Model: The best model with the optimal
hparams and the symptoms as features

• Other Features Model: The best model with the op-
timal hyperparameters and the best features combina-
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tion

7. ML MODEL RESULTS

In this section we present the results of the ML models we
have trained. We then deeply inspect the best performing
model, in order to understand its features and its perfor-
mance.

a. Model Selection

As previously shown by the operative flow in Figure 18,
there are several phases involved in the selection of the op-
timal prediction model. Given our limited resources we
chose to take a greedy approach by performing the feature
selection first, and then optimizing the hyperparameters at
a later time for each of the three models considered.

Features Selection

To reduce the amount of time spent training the models to
select the best hyperparameters, it is best to first limit the
number of features considered. The selection of the most
useful features was performed using a forward stepwise se-
lection, following a greedy a approach that aims at maxi-
mizing the accuracy. The hyperparameters were initalized
with the default values provided by the library scikit-learn.
As depicted in Figure 19, we can see that the best accu-
racy with the logistic regression model is reached after the
third iteration, with little improvement with respect to the
model using a single feature. This kind of model seems
to favor information about communities and the L2 mea-
sure. The feature about the community count is weak on
its own, being the only one that adds 3 columns, but it
seems to carry complementary information with respect to
the other features, raising the accuracy by a small margin.
Figure 20 shows that the random forest models work best

Fig. 19: Accuracy of the logistic regression models over the iterations of the
forward stepwise feature selection

with less information than logistic regression. In this case
the only features retained are the ones about communities:
these results start to reveal which features are the most use-
ful when it comes to classification. It is also worth noting
that the best random forest model has a slightly worse ac-
curacy than logistic regression, but that might be due to the
random choice of the model’s parameters.

Fig. 20: Accuracy of the random forest models over the iterations of the stepwise
feature selection

The multi-layer perceptron model stands in the middle with
respect to the other two models in terms of accuracy. As un-
derlined by Figure 21, unlike the other two cases the model
performs its prediction by leveraging only the L2 features,
enhanced by the smaller community count. Two steps are
enough to reach the best possible test accuracy. This par-
ticular implementation of neural network has one hidden
layer with 100 neurons, and in our case its performance is
better than the random forest model, but still slightly worse
than the logistic regression. We expect this to change after
the optimization of the hyperparameters, due to the ability
of the MLP to ‘see’ non-linearities.

Fig. 21: Accuracy of the MLP models over the iterations of the stepwise feature
selection

Hyperparameters Selection

The process of hyperparameter tuning was integral to op-
timizing the performance of our machine learning mod-
els. We experimented with a range of hyperparameters
for each model and identified the best configurations based
on test accuracy. Tables 1, 2, and 3 detail the hyperpa-
rameters tested and the best selections for Logistic Regres-
sion, Random Forest, and Multi-Layer Perceptron (MLP)
respectively.
These hyperparameter configurations were carefully se-
lected to maximize the performance of each model. The
Logistic Regression model, with its optimal C value and
penalty type, demonstrates a balance between model com-
plexity and regularization. The Random Forest model’s pa-
rameters, such as the number of estimators and maximum
depth, were chosen to balance the bias-variance trade-off,
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Hyperparameters Test Best

C
0.001, 0.01, 0.1, 0.5,

0.75, 1, 1.25,
1.50, 10, 100

1.5

max iter
100, 200, 300,

500, 1000
Until

Convergence

penalty
l1, l2,
None

l2

solver
lbfgs,

liblinear,
newton-cg

lbfgs

Table 1: Best Hyperparameters for Logistic Regression

Hyperparameters Test Best

n estimators
50, 80, 100,

200, 300, 400,
500, 600

600

max depth
25, 50, 60,

75, 100, None
50

min samples split
2, 5,

10, 20
2

min samples leaf
1, 2,
5, 10

1

Table 2: Best Hyperparameters for Random Forest

ensuring robustness and generalization. Lastly, the MLP
model, with its specific hidden layer sizes and activation
function, was configured to effectively capture complex,
non-linear relationships in the data.

Model Comparison

As illustrated in Figure 18, our model ensemble now com-
prises six variants: three leveraging only symptoms and
three incorporating new network-based features. The se-
lection of the best-performing model from each group was
based on test accuracy assessment, where the test is the
same balanced dataset in all cases. Figure 22 illustrates
consistently low overfitting across all models, showcasing
the stability of the symptom-only models. In contrast, Fig-
ure 23, portraying the accuracy of models with the new fea-
tures, reveals some overfitting, particularly in the MLP and
Random Forest.
The observed tendency for models with new features to ex-
hibit more pronounced overfitting is unsurprising, given the
greater number and complexity of these features compared
to symptoms. Notably, despite their different complexity,
all models demonstrate similar test accuracy levels, sug-
gesting that a linear separation boundary suffices for effec-
tive feature classification. Considering this, we retain the
Logistic Regression model as the best-performing model
in each group, striking a balance between performance and
complexity.

b. New Features Effect

The best model from each group was further trained on the
full balanced dataset to ensure a more reliable performance
evaluation and the test accuracy was computed on the real
unbalanced data. The results in Figure 24 reveal a min-
imal difference between the two groups. This addresses

Hyperparameters Test Best

First hidden layer

(300)
(400)

(100, 50)
(500, 200)
(60), (80)

(100), (200)
(100, 100, 100)
(900, 800, 700)
(700, 300, 100)

(80)

max iter
100, 200
300, 500

1000
Until Convergence

alpha
0.0001, 0.001

0.01, 0.1, 1
0.0001

activation
relu, tanh

logistic, identity
relu

Table 3: Best Hyperparameters for MLP

Fig. 22: Accuracy of the three models with only symptoms

our first goal: the new features, only slightly improve the
model, offering a comparable performance to using symp-
toms alone. However, It’s essential to note that the new fea-
tures are more numerous than the symptoms, contributing
to a more complex model. In conclusion, the extracted net-
work features are not a superior alternative to symptoms.
It is worth to underline that the ‘simplicity’ of the dataset,
which leads to a very high accuracy in all models, may
also affect the performance evaluation of the new features,
which have a small room to improve the model. Therefore,
a possible avenue for future exploration could involve the
use of more complex dataset, to better assess the perfor-
mance of the new features.
Another viable option for future work is to use the new fea-
tures as a complement to the symptoms.

c. Best Model Analysis

Given that the logistic regression using only symptoms and
the one with the new features achieve the same accuracy,
we have selected the logistic regression with the new fea-
tures as the superior model for further analysis. Consider-
ing its greater complexity and the small level of overfitting,
this model has the potential to capture more nuanced infor-
mation and intricate patterns.
The model contains 3 group of features: community size,
SI index level 2 and community count.
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Fig. 23: Accuracy of the three models with new features

Fig. 24: Accuracy of the best models from both groups

Performance analysis

The performance of our predictive model, as demonstrated
by the confusion matrix in Figure 25, is indicative of its ca-
pability to effectively distinguish between different disease
classes. These classes are stratified based on their respec-
tive Disease Influence (DI) indices.

• Class 1: Low DI L1 - Low DI L2: Diseases with a
low degree (DI L1) and their symptoms are connected
to a limited number of other diseases (DI L2) tend to
be highly specific, which is reflected in the model’s
precision for such cases. The confusion matrix ex-
hibits a low misclassification rate for these diseases,
suggesting that when such specific symptoms are pre-
sented, the model can predict with high confidence,
albeit for a restricted number of cases.

• Class 2: Low DI L1 - High DI L2: Diseases charac-
terized by a low DI L1 but a high DI L2 are connected
to a few symptoms, which in turn are associated with
a wider array of other diseases. The model’s perfor-
mance for these diseases, as shown in the confusion
matrix, presents a moderate degree of accuracy. Mis-
classifications may occur due to the broader symptom
overlap with other diseases.

• Class 3: High DI L1 - Low DI L2: A high DI L1 cou-
pled with a low DI L2 signifies diseases with numer-
ous related symptoms, which however, do not signifi-
cantly influence other diseases. The confusion matrix
suggests that such diseases are predicted with a con-
siderable degree of accuracy. The symptoms, while

not disease-specific, contribute to a heightened over-
all model performance due to their prevalence.

• Class 4: High DI L1 - High DI L2: Diseases with
both high DI L1 and DI L2 indices are those that ex-
hibit common symptoms influencing a multitude of
other diseases. The confusion matrix shows that the
model is generally accurate in predicting these dis-
eases. However, due to the commonality of symp-
toms, there is an inherent challenge in precisely clas-
sifying them, which could result in a higher misclas-
sification rate with diseases sharing similar symptom
profiles.

The aforementioned analysis underscores the complexity
inherent in disease-symptom relationships and their impact
on predictive modeling. As the confusion matrix corrob-
orates, our model adeptly handles diseases with distinct
symptom profiles (Low DI L1 - Low DI L2) but is chal-
lenged by diseases sharing common symptoms (High DI
L1 - High DI L2). Consequently, the model’s performance
is a direct reflection of the nuanced interplay between dis-
ease prevalence and symptom specificity, as encapsulated
by the DI indices. Figure 26 displays a detailed compar-

Fig. 25: Confusion matrix of the predictive model

ison of the model’s diagnostic efficacy for a wide range
of diseases, identified by their numerical codes on the x-
axis. The graph features two key metrics: the F1 score
and accuracy, represented by blue and orange lines, respec-
tively. The accuracy line, mostly stable and high, shows
the model’s consistent ability to correctly detect both pres-
ence and absence of each disease. In contrast, the F1 score
line, more varied, reflects the complexity and variability
in predicting disease symptoms, illustrating the model’s
precision and recall for each disease. High points on the
F1 score indicate optimal model performance, with a bal-
anced precision and recall, effectively identifying true dis-
ease cases without errors. Low points, however, highlight
areas where the model is less effective.
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Fig. 26: A comparison of the F1 score and accuracy for each disease predicted by the model.

Best and worst performing diseases

Our diagnostic model’s effectiveness is analyzed by assess-
ing its performance across different diseases.
Table 4 lists the top ten diseases where the model demon-
strates high accuracy. This exceptional performance is fur-
ther highlighted by near-perfect f1-scores, indicating an op-
timal balance of precision and recall. Diseases like mi-
tral valve disease, syndrome of inappropriate secretion, and
acute bronchospasm stand out with f1-scores of 1.0, exem-
plifying the model’s precision in diagnosing these condi-
tions without any errors.
On the other hand, Table 5 outlines the ten diseases with
the lowest accuracy, indicating areas where the model’s di-
agnostic efficiency is limited. While accuracy is lower for
these diseases, the f1-scores for conditions like premature
ventricular contractions and histoplasmosis reveal that the
model, when accurate, maintains reasonable precision and
recall. Nevertheless, the notable decline in f1-score for
ailments such as vitamin b12 deficiency and otitis media
reveals a significant imbalance in the model’s diagnostic
precision and recall, underscoring the need for targeted im-
provements in these specific areas.

Disease Accuracy f1-score
mitral valve disease 1.0 1.000000

syndrome of inappropriate secretion 1.0 1.000000
acute bronchospasm 1.0 1.000000

eye alignment disorder 1.0 1.000000
reactive arthritis 1.0 1.000000

joint effusion 1.0 0.985507
anal fistula 1.0 0.823529

open wound of the shoulder 1.0 0.791667
alzheimer disease 1.0 0.769231

infectious gastroenteritis 1.0 0.666667

Table 4: Accuracy and f1 score for the 10 diseases with the highest accuracy

Disease Accuracy f1-score
premature ventricular contractions 0.500000 0.666667

histoplasmosis 0.498876 0.560252
hemiplegia 0.483908 0.496462

acute bronchiolitis 0.473684 0.562500
poisoning due to antimicrobial drugs 0.467849 0.567968

open wound of the mouth 0.394890 0.564315
acute otitis media 0.383938 0.468456

vitamin b12 deficiency 0.333333 0.071429
bladder cancer 0.288740 0.378102

otitis media 0.250000 0.181818

Table 5: Accuracy and f1 score for the 10 diseases with the lowest accuracy

Analysis of bladder cancer

Bladder cancer, as identified in Table 5, is a disease with
notably low diagnostic accuracy in our model, prompting
a more detailed investigation. Figure 27 illustrates the pro-
portion of bladder cancer cases incorrectly identified by the
model, revealing frequent misclassifications, especially as
diabetes insipidus and hemiplegia.
Figures 28 and 29 delve deeper, showing the number of
bladder cancer cases exhibiting symptoms akin to diabetes
insipidus and hemiplegia, respectively. It’s striking that
90% of bladder cancer samples share symptoms with di-
abetes insipidus and hemiplegia, clarifying why the model
often confuses bladder cancer with these diseases.
Moreover, an important factor contributing to this diagnos-
tic challenge is the representation of bladder cancer in our
dataset. Constituting only 0.36% of the total data, this lim-
ited presence may significantly impact the model’s ability
to accurately identify bladder cancer, leading to its lower
accuracy for this specific condition.

Fig. 28: number of samples of bladder cancer and diabets insipidus that have the
same symptoms

Fig. 29: number of samples of bladder cancer and hemiplegia that have the same
symptoms
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Fig. 27: Percentage of bladder cancer samples misclassified

Analysis of otitis

In a similar vein, we analyzed otitis, another condition ex-
hibiting low diagnostic accuracy. Figure30 highlights that
otitis is frequently misidentified as itching of unknown ori-
gin, with a significant 70% of cases being incorrectly clas-
sified.
Figure31 further elucidates this issue, showing that all oti-
tis samples (100%) manifest symptoms similar to those of
itching of unknown cause. This overlap in symptoms is a
key reason why the model often mistakes otitis for this con-
dition.
The challenge in accurately diagnosing otitis is com-
pounded by its minimal representation in the dataset,
amounting to only 0.0016%. Conversely, itching of un-
known cause constitutes a slightly larger portion of the
dataset (0.018%). This disparity in representation may bias
the model towards more frequently diagnosing itching of
unknown cause, leading to the observed high rate (70%) of
misclassification of otitis cases.

Fig. 30: Percentage of otitis samples misclassified

Fig. 31: number of samples of otitis and itching of unknown cause that have the
same symptoms

Most impactful symptoms

Another crucial aspect is to analyze which symptoms are
most important for the model. Since the multiclass version
of logistic regression assigns a weight to each symptom for
every class, we have calculated the average absolute value
of these weights for each symptom.
Figure 32 shows the 30 most significant symptoms accord-
ing to the model. As can be observed, certain symptoms
are more influential. These include both ‘community size’
and ‘SI index level 2’ formats, such as ‘sharp chest pain’
and ‘sharp abdominal pain’, among others.
Furthermore, it is noteworthy that among the three network
information types obtained, none stands out as more im-
portant than the others. All three hold significance, as both
‘community size’ and ‘SI index level 2’ are equally rep-
resented among the most important symptoms, and ‘com-
munity count’ is significant for the first two out of three
communities.

d. Computational Complexity

After confirming the presence of some symptoms that are
more impactful than others, we applied a reduction tech-
nique based on their importance, leveraging the division
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Fig. 32: 10 most impactful features

into four classes based on the L1 and L2 Symptom Influ-
ence indexes (SI). The first test was to divide the data into
four balanced classes, containing 25% of the features each.
As shown by Figure 33, the most impactful set of features
was the one corresponding to the class with both high SI
L1 and L2. This feature class was the one performing bet-
ter, with only a few classes that were consistently mispre-
dicted. The worst one was the low-low class, which had a
class-wise accuracy of less than 20% for most of the dis-
ease classes.

Fig. 33: Histogram of the class accuracy for each feature group, based on SI L1 and
L2.

Even then, the high-high class by itself would not be a suf-
ficiently good set of features to make predictions, so it was
used as a baseline to expand the feature set, retaining in-
creasingly more features. As it can be seen from Figure 34,
the model performance is quite good even when using only
a limited amount of features, reaching around 80% test ac-
curacy when using half of the features, which corresponds
to a reduction of 10% of the accuracy of the complete

model, giving up half the data. This is a good trade-off, but
the accuracy is valuable, so we decided to give up at most
1% accuracy, which in this case corresponds to a reduction
of the features by almost 30%.

Fig. 34: Comparison between the reduction in features against the reduction on the
test accuracy.

To assess how the reduction of the complexity of the model
impacts the training, we repeated the training phase on the
whole balanced dataset, recording the difference in time be-
tween the two models. In the end, the experimental results
showed a reduction in training time of 9.39% caused by a
reduction of the training features of 27.87%. The relative
time reduction is lower in comparison to the whole model,
but it shows promising results that could possibly be even
more impactful when dealing with more complex models.
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Fig. 35: Visual rendition of the training time reduction compared to the features.

Given the reduction of the features of almost 30%, the ac-
curacy went down by around a percent and a half, but to re-
ally assess the quality of the reduced model, we cannot rely
only on the test accuracy. Other metrics were employed for
the evaluation, which were the precision, recall, and AUC
of the ROC. As depicted by Figure 36, the data showed
a similar difference in these metrics, with the exeption of
the AUC being almost identical. This helped us understand
that the reduction on the features didn’t cause the model to
perform well on just the most frequent classes, but resulted
in a good performance across the whole data.

Fig. 36: comparison of various metrics which are useful to asses the relative quality
of the reduced model.

8. CONCLUSION

Our study successfully integrates network analysis with
machine learning to enhance disease prediction models in
healthcare. By analyzing symptom-disease networks us-
ing Symptom Influence (SI) and Disease Influence (DI)
indices, we uncovered critical patterns essential for ac-
curate disease prediction. These indices revealed diverse
symptom-disease associations, guiding the selection of fea-
tures for our models.
Logistic Regression emerged as the most effective model,
balancing accuracy and complexity, particularly when aug-
mented with network-based features. This model demon-
strated high accuracy and managed to capture complex pat-

terns without significant overfitting.
A key achievement of our study is the effective balance be-
tween feature reduction and model performance. Focusing
on significant symptoms, we reduced training time substan-
tially while maintaining high accuracy. This approach is
especially valuable in real-world applications where com-
putational efficiency is crucial.
The study, however, also recognized challenges in disease
prediction, as highlighted by the analysis of specific dis-
eases like bladder cancer and otitis media. These cases il-
lustrated the intricacies involved in disease classification
and the necessity for continuous model refinement.

9. LIMITS AND FUTURE WORKS

In the pursuit of our final model, we navigated through a
series of pivotal decisions, ranging from model selection,
feature choices, and the intricate interplay of normaliza-
tion techniques to hyperparameter tuning. These decisions,
while steering us toward a robust model, come with inher-
ent trade-offs, potentially leading to suboptimal outcomes.
Here, we discuss some limitations in our approach and sug-
gest avenues for future exploration.

a. Limits

• Feature Selection: The selection of optimal features,
as depicted in Figure 18, occurred before hyperparam-
eter tuning. This sequential approach may result in the
choice of an ostensibly optimal feature set, as both as-
pects are tightly linked.

• Hyperparameter Tuning: The determination of the
best hyperparameter combination relied on accuracy
as the sole metric. While we employed a stratified
cross-validation on a balanced dataset for a reliable
accuracy estimate, a more comprehensive approach
should encompass additional metrics such as preci-
sion, recall, and F1-score.

• Feature Reduction: The feature reduction process
evenly separated the four classes of symptoms and
commenced retaining features from the class demon-
strating the highest predictive power. This approach
may yield suboptimal results, as a specific threshold
might exist beyond which the predictive power of a
feature diminishes. To better clarify this concept, let’s
consider the following example: suppose we have
only two classes of symptoms, evenly distributed us-
ing the median as a threshold on the degree value.
Suppose also that the predictive power of the features
is the same for both classes. In this case we cannot
actually say that the degree doesn’t impact the predic-
tive power of the model. Indeed in the high degree
class we can have put lots of features with a degree
not sufficiently high to become less relevant and these
diseases end up altering the result of the whole class,
especially in a power law distribution context. A re-
fined strategy involves employing a manual threshold
for the degree value, identifying truly impactful fea-
tures, potentially resulting in unbalanced classes.
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b. Future Work

• Symptoms Communities: The features extracted
from symptom communities were integrated into the
model based on their inherent ability to capture rele-
vant information. A potential enhancement involves
leveraging this knowledge explicitly, using it as prior
probability for the model. This entails favoring the
most common diseases associated with the patient’s
symptoms and their communities.

• Multi-label Classification: Our current approach
treats diseases as independent entities. However,
some diseases may be intricately connected. A
prospective improvement entails treating diseases as
a multi-label classification problem. For instance, the
model could output the three most likely diseases in-
stead of a singular one.

• Disease Complexity Analysis: Our accuracy analy-
sis extends to different classes of diseases based on
their L1 and L2 values. A potential refinement in-
volves a nuanced exploration of disease complexity,
adjusting L1 and L2 thresholds to maximize accuracy
differentials among disease classes. This approach
would facilitate an in-depth analysis of diseases that
pose higher prediction challenges.

• Rare Diseases: As shown by the analysis, in many
cases the model struggle to predict rare diseases. A
valuable future work could be analyzing the state of
the art of rare diseases prediction in literature and try
to apply it to our model.
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10. APPENDIX

Fig. 37: Community 2 of symptoms

Fig. 38: Community 3 of symptoms

Fig. 39: Community 2 of diseases

Fig. 40: Community 3 of diseases
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Fig. 41: Composition of the high-L1-high-L2 class for diseases

Fig. 42: Diseases divided into the four classes



INTEGRATIVE NETWORK ANALYSIS 23

REFERENCES

[1] Ulrik Brandes. “A Faster Algorithm for Between-
ness Centrality”. In: The Journal of Mathemati-
cal Sociology 25 (Mar. 2004). DOI: 10 . 1080 /
0022250X.2001.9990249.

[2] Ulrik Brandes. “On variants of shortest-path be-
tweenness centrality and their generic computation”.
In: Social Networks 30.2 (May 2008), pp. 136–145.
ISSN: 0378-8733. DOI: 10.1016/j.socnet.2007.
11.001.

[3] Aaron Clauset, M. E. J. Newman, and Cristopher
Moore. “Finding community structure in very large
networks”. In: Physical Review E 70.6 (Dec. 2004).
arXiv:cond-mat/0408187, p. 066111. ISSN: 1539-
3755, 1550-2376. DOI: 10.1103/PhysRevE.70.
066111.

[4] C. A. Hidalgo et al. “The Product Space Conditions
the Development of Nations”. In: Science 317.5837
(July 2007), pp. 482–487. ISSN: 0036-8075. DOI:
10.1126/science.1144581.

[5] César A. Hidalgo and Ricardo Hausmann. “The
building blocks of economic complexity”. In:
Proc. Natl. Acad. Sci. U.S.A. 106.26 (June 2009),
pp. 10570–10575. DOI: 10 . 1073 / pnas .
0900943106.

[6] Pahulpreet Singh Kohli and Shriya Arora. “Applica-
tion of Machine Learning in Disease Prediction”. In:
2018 4th International Conference on Computing
Communication and Automation (ICCCA). IEEE,
pp. 14–15. DOI: 10.1109/CCAA.2018.8777449.

[7] M. E. J. Newman. “Modularity and community
structure in networks”. In: Proceedings of the Na-
tional Academy of Sciences of the United States of
America 103.23 (June 2006), pp. 8577–8582. ISSN:
0027-8424. DOI: 10.1073/pnas.0601602103.

[8] Archana Singh and Rakesh Kumar. “Heart Disease
Prediction Using Machine Learning Algorithms”.
In: 2020 International Conference on Electrical and
Electronics Engineering (ICE3). IEEE, pp. 14–15.
DOI: 10.1109/ICE348803.2020.9122958.

[9] Alessandro Spelta, Nicoló Pecora, and Paolo Pag-
nottoni. “Assessing harmfulness and vulnerability in
global bipartite networks of terrorist-target relation-
ships”. In: Social Networks 72 (Jan. 2023), pp. 22–
34. ISSN: 0378-8733. DOI: 10.1016/j.socnet.
2022.08.003.

[10] Tiziano Squartini, Giorgio Fagiolo, and Diego Gar-
laschelli. “Randomizing world trade. I. A binary net-
work analysis”. In: Phys. Rev. E 84.4 (Oct. 2011),
p. 046117. ISSN: 2470-0053. DOI: 10 . 1103 /
PhysRevE.84.046117.

[11] Tiziano Squartini, Giorgio Fagiolo, and Diego Gar-
laschelli. “Randomizing world trade. II. A weighted
network analysis”. In: Phys. Rev. E 84.4 (Oct. 2011),
p. 046118. ISSN: 2470-0053. DOI: 10 . 1103 /
PhysRevE.84.046118.

[12] Shahadat Uddin et al. “Comparing different super-
vised machine learning algorithms for disease pre-
diction”. In: BMC Med. Inf. Decis. Making 19.1
(Dec. 2019), pp. 1–16. ISSN: 1472-6947. DOI: 10.
1186/s12911-019-1004-8.

[13] Zhongheng Zhang. “Variable selection with step-
wise and best subset approaches”. In: Annals of
Translational Medicine (Apr. 2016). DOI: 10 .
21037/atm.2016.03.35.

https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1016/j.socnet.2007.11.001
https://doi.org/10.1016/j.socnet.2007.11.001
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1126/science.1144581
https://doi.org/10.1073/pnas.0900943106
https://doi.org/10.1073/pnas.0900943106
https://doi.org/10.1109/CCAA.2018.8777449
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1109/ICE348803.2020.9122958
https://doi.org/10.1016/j.socnet.2022.08.003
https://doi.org/10.1016/j.socnet.2022.08.003
https://doi.org/10.1103/PhysRevE.84.046117
https://doi.org/10.1103/PhysRevE.84.046117
https://doi.org/10.1103/PhysRevE.84.046118
https://doi.org/10.1103/PhysRevE.84.046118
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.21037/atm.2016.03.35
https://doi.org/10.21037/atm.2016.03.35

	1 Introduction
	2 Dataset
	3 Goals
	4 Network Methodology
	a Network Creation
	b Method of Reflections
	c Betweenness Centrality
	d Communities Detection

	5 Network Results
	a Method of reflection
	b Betweenness Centrality
	c Communities
	d Most Important Actors

	6 ML Model Methodology
	a Preliminary Data Preparation
	b Feature Extraction
	c Model Choice
	d Operative Flow

	7 ML Model Results
	a Model Selection
	b New Features Effect
	c Best Model Analysis
	d Computational Complexity

	8 Conclusion
	9 Limits and Future Works
	a Limits
	b Future Work

	10 Appendix

